Market structure and Schumpeterian growth

We present a discrete-time version of a Schumpeterian growth model. A natural R&D analogue to constant returns to scale implies a Poisson production function with diminishing marginal product. Surprisingly, the industry demand for R&D inputs does not depend on the number of firms in the R&am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic behavior & organization 2007, Vol.62 (1), p.47-62
Hauptverfasser: Lambson, Val E., Phillips, Kerk L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 47
container_title Journal of economic behavior & organization
container_volume 62
creator Lambson, Val E.
Phillips, Kerk L.
description We present a discrete-time version of a Schumpeterian growth model. A natural R&D analogue to constant returns to scale implies a Poisson production function with diminishing marginal product. Surprisingly, the industry demand for R&D inputs does not depend on the number of firms in the R&D sector if Bertrand competition ensues following ties. In contrast, demand is higher if ties result in collusion. In general equilibrium, Bertrand competition leads to random switching between monopoly and competitive production. Under collusion, production is always at the monopoly level, but there is faster growth. Numerical simulations suggest that this leads to higher welfare.
doi_str_mv 10.1016/j.jebo.2004.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36475284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167268105001964</els_id><sourcerecordid>1186108021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-66aac4080675084fd9f9808494fc569d429bd009c2ca4853657bc63bdb30b1623</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU_Fg-ChNUnTpAEvIuoKigf1HNJ06rbutjVJFf-9s6x48GDgZQL53szwCDlmNGOUyfMu66AaMk6pyKjOKBM7ZMZKpVOmCrZLZgiplMuS7ZODEDqKR3E9I2cP1r9BTEL0k4uTh8T2dfLkltN6hAi-tX3y6ofPuDwke41dBTj6qXPycnP9fLVI7x9v764u71NXcB1TKa11gpZUqoKWoql1o0t8aNG4QupacF3VlGrHnRVlkctCVU7mVV3ltGKS53Nyuu07-uF9ghDNug0OVivbwzAFk0uhCl4KBE_-gN0w-R53MzzHiUrkBUJ8Czk_hOChMaNv19Z_GUbNJjrTmU10ZhOdodpgdGhabE0eRnC_DgDYoP7VfJjcSo7XFwqdCkuLYqgRJZTB72VcY6uLbSvAyD5a8Ca4FnoHdevBRVMP7X-bfANXyY3u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230847435</pqid></control><display><type>article</type><title>Market structure and Schumpeterian growth</title><source>RePEc</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lambson, Val E. ; Phillips, Kerk L.</creator><creatorcontrib>Lambson, Val E. ; Phillips, Kerk L.</creatorcontrib><description>We present a discrete-time version of a Schumpeterian growth model. A natural R&amp;D analogue to constant returns to scale implies a Poisson production function with diminishing marginal product. Surprisingly, the industry demand for R&amp;D inputs does not depend on the number of firms in the R&amp;D sector if Bertrand competition ensues following ties. In contrast, demand is higher if ties result in collusion. In general equilibrium, Bertrand competition leads to random switching between monopoly and competitive production. Under collusion, production is always at the monopoly level, but there is faster growth. Numerical simulations suggest that this leads to higher welfare.</description><identifier>ISSN: 0167-2681</identifier><identifier>EISSN: 1879-1751</identifier><identifier>DOI: 10.1016/j.jebo.2004.09.014</identifier><identifier>CODEN: JEBOD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Business economics ; Demand functions ; Enterprises ; Firm theory ; Growth ; Growth models ; Growth rates ; Market structure ; Poisson distribution ; Research and development ; Studies</subject><ispartof>Journal of economic behavior &amp; organization, 2007, Vol.62 (1), p.47-62</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-66aac4080675084fd9f9808494fc569d429bd009c2ca4853657bc63bdb30b1623</citedby><cites>FETCH-LOGICAL-c529t-66aac4080675084fd9f9808494fc569d429bd009c2ca4853657bc63bdb30b1623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jebo.2004.09.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,30999,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejeborg/v_3a62_3ay_3a2007_3ai_3a1_3ap_3a47-62.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambson, Val E.</creatorcontrib><creatorcontrib>Phillips, Kerk L.</creatorcontrib><title>Market structure and Schumpeterian growth</title><title>Journal of economic behavior &amp; organization</title><description>We present a discrete-time version of a Schumpeterian growth model. A natural R&amp;D analogue to constant returns to scale implies a Poisson production function with diminishing marginal product. Surprisingly, the industry demand for R&amp;D inputs does not depend on the number of firms in the R&amp;D sector if Bertrand competition ensues following ties. In contrast, demand is higher if ties result in collusion. In general equilibrium, Bertrand competition leads to random switching between monopoly and competitive production. Under collusion, production is always at the monopoly level, but there is faster growth. Numerical simulations suggest that this leads to higher welfare.</description><subject>Business economics</subject><subject>Demand functions</subject><subject>Enterprises</subject><subject>Firm theory</subject><subject>Growth</subject><subject>Growth models</subject><subject>Growth rates</subject><subject>Market structure</subject><subject>Poisson distribution</subject><subject>Research and development</subject><subject>Studies</subject><issn>0167-2681</issn><issn>1879-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>7QJ</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU_Fg-ChNUnTpAEvIuoKigf1HNJ06rbutjVJFf-9s6x48GDgZQL53szwCDlmNGOUyfMu66AaMk6pyKjOKBM7ZMZKpVOmCrZLZgiplMuS7ZODEDqKR3E9I2cP1r9BTEL0k4uTh8T2dfLkltN6hAi-tX3y6ofPuDwke41dBTj6qXPycnP9fLVI7x9v764u71NXcB1TKa11gpZUqoKWoql1o0t8aNG4QupacF3VlGrHnRVlkctCVU7mVV3ltGKS53Nyuu07-uF9ghDNug0OVivbwzAFk0uhCl4KBE_-gN0w-R53MzzHiUrkBUJ8Czk_hOChMaNv19Z_GUbNJjrTmU10ZhOdodpgdGhabE0eRnC_DgDYoP7VfJjcSo7XFwqdCkuLYqgRJZTB72VcY6uLbSvAyD5a8Ca4FnoHdevBRVMP7X-bfANXyY3u</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Lambson, Val E.</creator><creator>Phillips, Kerk L.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2007</creationdate><title>Market structure and Schumpeterian growth</title><author>Lambson, Val E. ; Phillips, Kerk L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-66aac4080675084fd9f9808494fc569d429bd009c2ca4853657bc63bdb30b1623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Business economics</topic><topic>Demand functions</topic><topic>Enterprises</topic><topic>Firm theory</topic><topic>Growth</topic><topic>Growth models</topic><topic>Growth rates</topic><topic>Market structure</topic><topic>Poisson distribution</topic><topic>Research and development</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambson, Val E.</creatorcontrib><creatorcontrib>Phillips, Kerk L.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of economic behavior &amp; organization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambson, Val E.</au><au>Phillips, Kerk L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Market structure and Schumpeterian growth</atitle><jtitle>Journal of economic behavior &amp; organization</jtitle><date>2007</date><risdate>2007</risdate><volume>62</volume><issue>1</issue><spage>47</spage><epage>62</epage><pages>47-62</pages><issn>0167-2681</issn><eissn>1879-1751</eissn><coden>JEBOD9</coden><abstract>We present a discrete-time version of a Schumpeterian growth model. A natural R&amp;D analogue to constant returns to scale implies a Poisson production function with diminishing marginal product. Surprisingly, the industry demand for R&amp;D inputs does not depend on the number of firms in the R&amp;D sector if Bertrand competition ensues following ties. In contrast, demand is higher if ties result in collusion. In general equilibrium, Bertrand competition leads to random switching between monopoly and competitive production. Under collusion, production is always at the monopoly level, but there is faster growth. Numerical simulations suggest that this leads to higher welfare.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jebo.2004.09.014</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2681
ispartof Journal of economic behavior & organization, 2007, Vol.62 (1), p.47-62
issn 0167-2681
1879-1751
language eng
recordid cdi_proquest_miscellaneous_36475284
source RePEc; Applied Social Sciences Index & Abstracts (ASSIA); Access via ScienceDirect (Elsevier)
subjects Business economics
Demand functions
Enterprises
Firm theory
Growth
Growth models
Growth rates
Market structure
Poisson distribution
Research and development
Studies
title Market structure and Schumpeterian growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Market%20structure%20and%20Schumpeterian%20growth&rft.jtitle=Journal%20of%20economic%20behavior%20&%20organization&rft.au=Lambson,%20Val%20E.&rft.date=2007&rft.volume=62&rft.issue=1&rft.spage=47&rft.epage=62&rft.pages=47-62&rft.issn=0167-2681&rft.eissn=1879-1751&rft.coden=JEBOD9&rft_id=info:doi/10.1016/j.jebo.2004.09.014&rft_dat=%3Cproquest_cross%3E1186108021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230847435&rft_id=info:pmid/&rft_els_id=S0167268105001964&rfr_iscdi=true