Reducing bias in ecological studies: an evaluation of different methodologies

Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2006-10, Vol.169 (4), p.681-700
Hauptverfasser: Lancaster, Gillian A., Green, Mick, Lane, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue 4
container_start_page 681
container_title Journal of the Royal Statistical Society. Series A, Statistics in society
container_volume 169
creator Lancaster, Gillian A.
Green, Mick
Lane, Steven
description Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.
doi_str_mv 10.1111/j.1467-985X.2006.00418.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36432248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3877395</jstor_id><sourcerecordid>3877395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</originalsourceid><addsrcrecordid>eNqNUU1v1DAUjBBILIV_wCEXuCX4K_5A4lBVUFALSO2icrNeHKd1yMZbOym7_x5nUy1HeNLYT34zT6NxluUYlTjVu67EjItCyepnSRDiJUIMy3L3JFsdB0-zFVKcFVgp-Tx7EWOH5hJilX29ss1k3HCb1w5i7obcGt_7W2egz-M4Nc7G9zmk5wfoJxidH3Lf5o1rWxvsMOYbO9755iCx8WX2rIU-2leP90n249PH9dnn4vL7-Zez08vCcC5lAcQKRCiToJCo545WxDaMgKwMCMIs8AaTmjAiECfQIk65kphSSUzNFT3J3i57t8HfTzaOeuOisX0Pg_VT1JQzSgiT_yYmE6RSJBHlQjTBxxhsq7fBbSDsNUZ6Dlp3es5Tz3nqOWh9CFrvkvRikQa7teaoq3vofIgR9IOmgLlK5z7hoKXgEljCNoFLrAVC-m7cpG1vHh1DTH_QBhiMi3_dSIxQJarE-7Dwfrve7v_brb66vj5NXdK_XvRdHH046qkUgqp5fbGMXRzt7jiG8EtzQUWlb76d65v1mmMuL_Sa_gHFzMIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33482592</pqid></control><display><type>article</type><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</creator><creatorcontrib>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</creatorcontrib><description>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/j.1467-985X.2006.00418.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aggregate analysis ; Aggregated compound multinomial model ; Aggregated individual level model ; Applications ; Bias ; Binomial model ; Biology, psychology, social sciences ; Data analysis ; Disease models ; Diseases ; Ecological analysis ; Ecological modeling ; Ecological regression ; Ecology ; Empirical research ; Epidemiologic bias ; Exact sciences and technology ; Insurance, economics, finance ; Mathematical foundations ; Mathematics ; Methodology ; Modeling ; Parametric models ; Predisposing factors ; Probability and statistics ; Regression analysis ; Risk ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Social classes ; Statistical methods ; Statistics ; Stratified ecological analysis ; Wetland ecology</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2006-10, Vol.169 (4), p.681-700</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</citedby><cites>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3877395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3877395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18100575$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssa/v_3a169_3ay_3a2006_3ai_3a4_3ap_3a681-700.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lancaster, Gillian A.</creatorcontrib><creatorcontrib>Green, Mick</creatorcontrib><creatorcontrib>Lane, Steven</creatorcontrib><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</description><subject>Aggregate analysis</subject><subject>Aggregated compound multinomial model</subject><subject>Aggregated individual level model</subject><subject>Applications</subject><subject>Bias</subject><subject>Binomial model</subject><subject>Biology, psychology, social sciences</subject><subject>Data analysis</subject><subject>Disease models</subject><subject>Diseases</subject><subject>Ecological analysis</subject><subject>Ecological modeling</subject><subject>Ecological regression</subject><subject>Ecology</subject><subject>Empirical research</subject><subject>Epidemiologic bias</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Methodology</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Predisposing factors</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Social classes</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stratified ecological analysis</subject><subject>Wetland ecology</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUU1v1DAUjBBILIV_wCEXuCX4K_5A4lBVUFALSO2icrNeHKd1yMZbOym7_x5nUy1HeNLYT34zT6NxluUYlTjVu67EjItCyepnSRDiJUIMy3L3JFsdB0-zFVKcFVgp-Tx7EWOH5hJilX29ss1k3HCb1w5i7obcGt_7W2egz-M4Nc7G9zmk5wfoJxidH3Lf5o1rWxvsMOYbO9755iCx8WX2rIU-2leP90n249PH9dnn4vL7-Zez08vCcC5lAcQKRCiToJCo545WxDaMgKwMCMIs8AaTmjAiECfQIk65kphSSUzNFT3J3i57t8HfTzaOeuOisX0Pg_VT1JQzSgiT_yYmE6RSJBHlQjTBxxhsq7fBbSDsNUZ6Dlp3es5Tz3nqOWh9CFrvkvRikQa7teaoq3vofIgR9IOmgLlK5z7hoKXgEljCNoFLrAVC-m7cpG1vHh1DTH_QBhiMi3_dSIxQJarE-7Dwfrve7v_brb66vj5NXdK_XvRdHH046qkUgqp5fbGMXRzt7jiG8EtzQUWlb76d65v1mmMuL_Sa_gHFzMIm</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Lancaster, Gillian A.</creator><creator>Green, Mick</creator><creator>Lane, Steven</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200610</creationdate><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><author>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aggregate analysis</topic><topic>Aggregated compound multinomial model</topic><topic>Aggregated individual level model</topic><topic>Applications</topic><topic>Bias</topic><topic>Binomial model</topic><topic>Biology, psychology, social sciences</topic><topic>Data analysis</topic><topic>Disease models</topic><topic>Diseases</topic><topic>Ecological analysis</topic><topic>Ecological modeling</topic><topic>Ecological regression</topic><topic>Ecology</topic><topic>Empirical research</topic><topic>Epidemiologic bias</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Methodology</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Predisposing factors</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Social classes</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stratified ecological analysis</topic><topic>Wetland ecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lancaster, Gillian A.</creatorcontrib><creatorcontrib>Green, Mick</creatorcontrib><creatorcontrib>Lane, Steven</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lancaster, Gillian A.</au><au>Green, Mick</au><au>Lane, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing bias in ecological studies: an evaluation of different methodologies</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2006-10</date><risdate>2006</risdate><volume>169</volume><issue>4</issue><spage>681</spage><epage>700</epage><pages>681-700</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-985X.2006.00418.x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-1998
ispartof Journal of the Royal Statistical Society. Series A, Statistics in society, 2006-10, Vol.169 (4), p.681-700
issn 0964-1998
1467-985X
language eng
recordid cdi_proquest_miscellaneous_36432248
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Aggregate analysis
Aggregated compound multinomial model
Aggregated individual level model
Applications
Bias
Binomial model
Biology, psychology, social sciences
Data analysis
Disease models
Diseases
Ecological analysis
Ecological modeling
Ecological regression
Ecology
Empirical research
Epidemiologic bias
Exact sciences and technology
Insurance, economics, finance
Mathematical foundations
Mathematics
Methodology
Modeling
Parametric models
Predisposing factors
Probability and statistics
Regression analysis
Risk
Sampling theory, sample surveys
Sciences and techniques of general use
Social classes
Statistical methods
Statistics
Stratified ecological analysis
Wetland ecology
title Reducing bias in ecological studies: an evaluation of different methodologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20bias%20in%20ecological%20studies:%20an%20evaluation%20of%20different%20methodologies&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Lancaster,%20Gillian%20A.&rft.date=2006-10&rft.volume=169&rft.issue=4&rft.spage=681&rft.epage=700&rft.pages=681-700&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/j.1467-985X.2006.00418.x&rft_dat=%3Cjstor_proqu%3E3877395%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33482592&rft_id=info:pmid/&rft_jstor_id=3877395&rfr_iscdi=true