Reducing bias in ecological studies: an evaluation of different methodologies
Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual l...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2006-10, Vol.169 (4), p.681-700 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 4 |
container_start_page | 681 |
container_title | Journal of the Royal Statistical Society. Series A, Statistics in society |
container_volume | 169 |
creator | Lancaster, Gillian A. Green, Mick Lane, Steven |
description | Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted. |
doi_str_mv | 10.1111/j.1467-985X.2006.00418.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36432248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3877395</jstor_id><sourcerecordid>3877395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</originalsourceid><addsrcrecordid>eNqNUU1v1DAUjBBILIV_wCEXuCX4K_5A4lBVUFALSO2icrNeHKd1yMZbOym7_x5nUy1HeNLYT34zT6NxluUYlTjVu67EjItCyepnSRDiJUIMy3L3JFsdB0-zFVKcFVgp-Tx7EWOH5hJilX29ss1k3HCb1w5i7obcGt_7W2egz-M4Nc7G9zmk5wfoJxidH3Lf5o1rWxvsMOYbO9755iCx8WX2rIU-2leP90n249PH9dnn4vL7-Zez08vCcC5lAcQKRCiToJCo545WxDaMgKwMCMIs8AaTmjAiECfQIk65kphSSUzNFT3J3i57t8HfTzaOeuOisX0Pg_VT1JQzSgiT_yYmE6RSJBHlQjTBxxhsq7fBbSDsNUZ6Dlp3es5Tz3nqOWh9CFrvkvRikQa7teaoq3vofIgR9IOmgLlK5z7hoKXgEljCNoFLrAVC-m7cpG1vHh1DTH_QBhiMi3_dSIxQJarE-7Dwfrve7v_brb66vj5NXdK_XvRdHH046qkUgqp5fbGMXRzt7jiG8EtzQUWlb76d65v1mmMuL_Sa_gHFzMIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33482592</pqid></control><display><type>article</type><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</creator><creatorcontrib>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</creatorcontrib><description>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/j.1467-985X.2006.00418.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aggregate analysis ; Aggregated compound multinomial model ; Aggregated individual level model ; Applications ; Bias ; Binomial model ; Biology, psychology, social sciences ; Data analysis ; Disease models ; Diseases ; Ecological analysis ; Ecological modeling ; Ecological regression ; Ecology ; Empirical research ; Epidemiologic bias ; Exact sciences and technology ; Insurance, economics, finance ; Mathematical foundations ; Mathematics ; Methodology ; Modeling ; Parametric models ; Predisposing factors ; Probability and statistics ; Regression analysis ; Risk ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Social classes ; Statistical methods ; Statistics ; Stratified ecological analysis ; Wetland ecology</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2006-10, Vol.169 (4), p.681-700</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</citedby><cites>FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3877395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3877395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18100575$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssa/v_3a169_3ay_3a2006_3ai_3a4_3ap_3a681-700.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lancaster, Gillian A.</creatorcontrib><creatorcontrib>Green, Mick</creatorcontrib><creatorcontrib>Lane, Steven</creatorcontrib><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</description><subject>Aggregate analysis</subject><subject>Aggregated compound multinomial model</subject><subject>Aggregated individual level model</subject><subject>Applications</subject><subject>Bias</subject><subject>Binomial model</subject><subject>Biology, psychology, social sciences</subject><subject>Data analysis</subject><subject>Disease models</subject><subject>Diseases</subject><subject>Ecological analysis</subject><subject>Ecological modeling</subject><subject>Ecological regression</subject><subject>Ecology</subject><subject>Empirical research</subject><subject>Epidemiologic bias</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Methodology</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Predisposing factors</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Social classes</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stratified ecological analysis</subject><subject>Wetland ecology</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNUU1v1DAUjBBILIV_wCEXuCX4K_5A4lBVUFALSO2icrNeHKd1yMZbOym7_x5nUy1HeNLYT34zT6NxluUYlTjVu67EjItCyepnSRDiJUIMy3L3JFsdB0-zFVKcFVgp-Tx7EWOH5hJilX29ss1k3HCb1w5i7obcGt_7W2egz-M4Nc7G9zmk5wfoJxidH3Lf5o1rWxvsMOYbO9755iCx8WX2rIU-2leP90n249PH9dnn4vL7-Zez08vCcC5lAcQKRCiToJCo545WxDaMgKwMCMIs8AaTmjAiECfQIk65kphSSUzNFT3J3i57t8HfTzaOeuOisX0Pg_VT1JQzSgiT_yYmE6RSJBHlQjTBxxhsq7fBbSDsNUZ6Dlp3es5Tz3nqOWh9CFrvkvRikQa7teaoq3vofIgR9IOmgLlK5z7hoKXgEljCNoFLrAVC-m7cpG1vHh1DTH_QBhiMi3_dSIxQJarE-7Dwfrve7v_brb66vj5NXdK_XvRdHH046qkUgqp5fbGMXRzt7jiG8EtzQUWlb76d65v1mmMuL_Sa_gHFzMIm</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Lancaster, Gillian A.</creator><creator>Green, Mick</creator><creator>Lane, Steven</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200610</creationdate><title>Reducing bias in ecological studies: an evaluation of different methodologies</title><author>Lancaster, Gillian A. ; Green, Mick ; Lane, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6688-a2e702348a907b0234352ed42a85ca724ea6d12b2427062af06369813382cb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aggregate analysis</topic><topic>Aggregated compound multinomial model</topic><topic>Aggregated individual level model</topic><topic>Applications</topic><topic>Bias</topic><topic>Binomial model</topic><topic>Biology, psychology, social sciences</topic><topic>Data analysis</topic><topic>Disease models</topic><topic>Diseases</topic><topic>Ecological analysis</topic><topic>Ecological modeling</topic><topic>Ecological regression</topic><topic>Ecology</topic><topic>Empirical research</topic><topic>Epidemiologic bias</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Methodology</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Predisposing factors</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Social classes</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stratified ecological analysis</topic><topic>Wetland ecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lancaster, Gillian A.</creatorcontrib><creatorcontrib>Green, Mick</creatorcontrib><creatorcontrib>Lane, Steven</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lancaster, Gillian A.</au><au>Green, Mick</au><au>Lane, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing bias in ecological studies: an evaluation of different methodologies</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2006-10</date><risdate>2006</risdate><volume>169</volume><issue>4</issue><spage>681</spage><epage>700</epage><pages>681-700</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between-area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-985X.2006.00418.x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1998 |
ispartof | Journal of the Royal Statistical Society. Series A, Statistics in society, 2006-10, Vol.169 (4), p.681-700 |
issn | 0964-1998 1467-985X |
language | eng |
recordid | cdi_proquest_miscellaneous_36432248 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete |
subjects | Aggregate analysis Aggregated compound multinomial model Aggregated individual level model Applications Bias Binomial model Biology, psychology, social sciences Data analysis Disease models Diseases Ecological analysis Ecological modeling Ecological regression Ecology Empirical research Epidemiologic bias Exact sciences and technology Insurance, economics, finance Mathematical foundations Mathematics Methodology Modeling Parametric models Predisposing factors Probability and statistics Regression analysis Risk Sampling theory, sample surveys Sciences and techniques of general use Social classes Statistical methods Statistics Stratified ecological analysis Wetland ecology |
title | Reducing bias in ecological studies: an evaluation of different methodologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20bias%20in%20ecological%20studies:%20an%20evaluation%20of%20different%20methodologies&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Lancaster,%20Gillian%20A.&rft.date=2006-10&rft.volume=169&rft.issue=4&rft.spage=681&rft.epage=700&rft.pages=681-700&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/j.1467-985X.2006.00418.x&rft_dat=%3Cjstor_proqu%3E3877395%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33482592&rft_id=info:pmid/&rft_jstor_id=3877395&rfr_iscdi=true |