The formation of features for recognizing complex images based on stochastic geometry

The theory of obtaining the features of pattern recognition based on stochastic geometry and having a three-functional structure (triplet features) is presented. The effectiveness of the proposed method of forming features for recognizing complex-structured and semantically saturated images is prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement techniques 2008-02, Vol.51 (2), p.199-207
Hauptverfasser: Fedotov, N. G., Kol’chugin, A. S., Smol’kin, O. A., Moiseev, A. V., Romanov, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 199
container_title Measurement techniques
container_volume 51
creator Fedotov, N. G.
Kol’chugin, A. S.
Smol’kin, O. A.
Moiseev, A. V.
Romanov, S. V.
description The theory of obtaining the features of pattern recognition based on stochastic geometry and having a three-functional structure (triplet features) is presented. The effectiveness of the proposed method of forming features for recognizing complex-structured and semantically saturated images is proved. A practical example of the formation of features for images from the area of medical diagnostics is considered.
doi_str_mv 10.1007/s11018-008-9002-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36432169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36432169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-a794f511cd290d25f5ab673890005604b61aba13b94443bfc9836e73e793d5d23</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Bg7fqJGmT5iiL_0DwsnsOaZp0u7TNmrTg-ulNWUEQPA3M_N7jzUPomsAdARD3kRAgZQZQZhKAZuUJWpBCsKyUwE_RAoqcZUQKeo4uYtwBABNcLtBmvbXY-dDrsfUD9g47q8cp2DhvcbDGN0P71Q4NNr7fd_YTt71u0rnS0dY4aeLozVbHsTW4sb63YzhcojOnu2ivfuYSbZ4e16uX7O39-XX18JYZSssx00LmriDE1FRCTQtX6IoLliIDFBzyihNdacIqmec5q5yRJeNWMCskq4uasiW6Pfrug_-YbBxV30Zju04P1k9RMZ4zSrhM4M0fcOenMKRsioJMdoyXCSJHyAQfY7BO7UN6NhwUATW3rI4tq9SymltWs4YeNTGxQ2PDr_H_om8P938R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209793368</pqid></control><display><type>article</type><title>The formation of features for recognizing complex images based on stochastic geometry</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fedotov, N. G. ; Kol’chugin, A. S. ; Smol’kin, O. A. ; Moiseev, A. V. ; Romanov, S. V.</creator><creatorcontrib>Fedotov, N. G. ; Kol’chugin, A. S. ; Smol’kin, O. A. ; Moiseev, A. V. ; Romanov, S. V.</creatorcontrib><description>The theory of obtaining the features of pattern recognition based on stochastic geometry and having a three-functional structure (triplet features) is presented. The effectiveness of the proposed method of forming features for recognizing complex-structured and semantically saturated images is proved. A practical example of the formation of features for images from the area of medical diagnostics is considered.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-008-9002-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Diagnostics ; Geometry ; Investigations ; Measurement Science and Instrumentation ; Measurement techniques ; Medical and Biological Measurements ; Pattern recognition ; Physical Chemistry ; Physics ; Physics and Astronomy ; Stochastic models ; Studies</subject><ispartof>Measurement techniques, 2008-02, Vol.51 (2), p.199-207</ispartof><rights>Springer Science+Business Media, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-a794f511cd290d25f5ab673890005604b61aba13b94443bfc9836e73e793d5d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-008-9002-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-008-9002-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fedotov, N. G.</creatorcontrib><creatorcontrib>Kol’chugin, A. S.</creatorcontrib><creatorcontrib>Smol’kin, O. A.</creatorcontrib><creatorcontrib>Moiseev, A. V.</creatorcontrib><creatorcontrib>Romanov, S. V.</creatorcontrib><title>The formation of features for recognizing complex images based on stochastic geometry</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>The theory of obtaining the features of pattern recognition based on stochastic geometry and having a three-functional structure (triplet features) is presented. The effectiveness of the proposed method of forming features for recognizing complex-structured and semantically saturated images is proved. A practical example of the formation of features for images from the area of medical diagnostics is considered.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Diagnostics</subject><subject>Geometry</subject><subject>Investigations</subject><subject>Measurement Science and Instrumentation</subject><subject>Measurement techniques</subject><subject>Medical and Biological Measurements</subject><subject>Pattern recognition</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG_Bg7fqJGmT5iiL_0DwsnsOaZp0u7TNmrTg-ulNWUEQPA3M_N7jzUPomsAdARD3kRAgZQZQZhKAZuUJWpBCsKyUwE_RAoqcZUQKeo4uYtwBABNcLtBmvbXY-dDrsfUD9g47q8cp2DhvcbDGN0P71Q4NNr7fd_YTt71u0rnS0dY4aeLozVbHsTW4sb63YzhcojOnu2ivfuYSbZ4e16uX7O39-XX18JYZSssx00LmriDE1FRCTQtX6IoLliIDFBzyihNdacIqmec5q5yRJeNWMCskq4uasiW6Pfrug_-YbBxV30Zju04P1k9RMZ4zSrhM4M0fcOenMKRsioJMdoyXCSJHyAQfY7BO7UN6NhwUATW3rI4tq9SymltWs4YeNTGxQ2PDr_H_om8P938R</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Fedotov, N. G.</creator><creator>Kol’chugin, A. S.</creator><creator>Smol’kin, O. A.</creator><creator>Moiseev, A. V.</creator><creator>Romanov, S. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20080201</creationdate><title>The formation of features for recognizing complex images based on stochastic geometry</title><author>Fedotov, N. G. ; Kol’chugin, A. S. ; Smol’kin, O. A. ; Moiseev, A. V. ; Romanov, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-a794f511cd290d25f5ab673890005604b61aba13b94443bfc9836e73e793d5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Diagnostics</topic><topic>Geometry</topic><topic>Investigations</topic><topic>Measurement Science and Instrumentation</topic><topic>Measurement techniques</topic><topic>Medical and Biological Measurements</topic><topic>Pattern recognition</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedotov, N. G.</creatorcontrib><creatorcontrib>Kol’chugin, A. S.</creatorcontrib><creatorcontrib>Smol’kin, O. A.</creatorcontrib><creatorcontrib>Moiseev, A. V.</creatorcontrib><creatorcontrib>Romanov, S. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedotov, N. G.</au><au>Kol’chugin, A. S.</au><au>Smol’kin, O. A.</au><au>Moiseev, A. V.</au><au>Romanov, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The formation of features for recognizing complex images based on stochastic geometry</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>51</volume><issue>2</issue><spage>199</spage><epage>207</epage><pages>199-207</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>The theory of obtaining the features of pattern recognition based on stochastic geometry and having a three-functional structure (triplet features) is presented. The effectiveness of the proposed method of forming features for recognizing complex-structured and semantically saturated images is proved. A practical example of the formation of features for images from the area of medical diagnostics is considered.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11018-008-9002-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2008-02, Vol.51 (2), p.199-207
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_miscellaneous_36432169
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Diagnostics
Geometry
Investigations
Measurement Science and Instrumentation
Measurement techniques
Medical and Biological Measurements
Pattern recognition
Physical Chemistry
Physics
Physics and Astronomy
Stochastic models
Studies
title The formation of features for recognizing complex images based on stochastic geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20formation%20of%20features%20for%20recognizing%20complex%20images%20based%20on%20stochastic%20geometry&rft.jtitle=Measurement%20techniques&rft.au=Fedotov,%20N.%20G.&rft.date=2008-02-01&rft.volume=51&rft.issue=2&rft.spage=199&rft.epage=207&rft.pages=199-207&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-008-9002-8&rft_dat=%3Cproquest_cross%3E36432169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209793368&rft_id=info:pmid/&rfr_iscdi=true