Synthesis of minimal linear stabilizers

We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2009-05, Vol.45 (5), p.694-703
Hauptverfasser: Il’in, A. V., Korovin, S. K., Fomichev, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 5
container_start_page 694
container_title Differential equations
container_volume 45
creator Il’in, A. V.
Korovin, S. K.
Fomichev, V. V.
description We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.
doi_str_mv 10.1134/S0012266109050085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36431806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894335701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-ca876dfdd0ba3ccd25b42fcb2af23ea57205ac79d815357a91ada77bb322b1bf3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNviQU-r7yWbZPcoxX9Q8FA9hySbaMp2tybbQ_30plQQFE_vML8Z5g0h5wjXiKy6WQAgpUIgNMABan5AJiigLhnU7JBMdnK504_JSUpLAGgk8gm5Wmz78d2lkIrBF6vQh5Xuii70TscijdqELny6mE7Jkdddcmffd0pe7-9eZo_l_PnhaXY7Ly2rxFhaXUvR-rYFo5m1LeWmot4aqj1lTnNJgWsrm7ZGzrjUDepWS2kMo9Sg8WxKLve56zh8bFwa1Sok67pO927YJMVExbAGkcGLX-By2MQ-d1OUcYQ6z5Ih3EM2DilF59U65gfjViGo3W7qz27ZQ_eelNn-zcWf4P9NX33FbiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235108113</pqid></control><display><type>article</type><title>Synthesis of minimal linear stabilizers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Il’in, A. V. ; Korovin, S. K. ; Fomichev, V. V.</creator><creatorcontrib>Il’in, A. V. ; Korovin, S. K. ; Fomichev, V. V.</creatorcontrib><description>We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266109050085</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Control Theory ; Difference and Functional Equations ; Differential equations ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Polynomials ; Studies</subject><ispartof>Differential equations, 2009-05, Vol.45 (5), p.694-703</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-ca876dfdd0ba3ccd25b42fcb2af23ea57205ac79d815357a91ada77bb322b1bf3</citedby><cites>FETCH-LOGICAL-c346t-ca876dfdd0ba3ccd25b42fcb2af23ea57205ac79d815357a91ada77bb322b1bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266109050085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266109050085$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Il’in, A. V.</creatorcontrib><creatorcontrib>Korovin, S. K.</creatorcontrib><creatorcontrib>Fomichev, V. V.</creatorcontrib><title>Synthesis of minimal linear stabilizers</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.</description><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwNviQU-r7yWbZPcoxX9Q8FA9hySbaMp2tybbQ_30plQQFE_vML8Z5g0h5wjXiKy6WQAgpUIgNMABan5AJiigLhnU7JBMdnK504_JSUpLAGgk8gm5Wmz78d2lkIrBF6vQh5Xuii70TscijdqELny6mE7Jkdddcmffd0pe7-9eZo_l_PnhaXY7Ly2rxFhaXUvR-rYFo5m1LeWmot4aqj1lTnNJgWsrm7ZGzrjUDepWS2kMo9Sg8WxKLve56zh8bFwa1Sok67pO927YJMVExbAGkcGLX-By2MQ-d1OUcYQ6z5Ih3EM2DilF59U65gfjViGo3W7qz27ZQ_eelNn-zcWf4P9NX33FbiI</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Il’in, A. V.</creator><creator>Korovin, S. K.</creator><creator>Fomichev, V. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090501</creationdate><title>Synthesis of minimal linear stabilizers</title><author>Il’in, A. V. ; Korovin, S. K. ; Fomichev, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-ca876dfdd0ba3ccd25b42fcb2af23ea57205ac79d815357a91ada77bb322b1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Il’in, A. V.</creatorcontrib><creatorcontrib>Korovin, S. K.</creatorcontrib><creatorcontrib>Fomichev, V. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Il’in, A. V.</au><au>Korovin, S. K.</au><au>Fomichev, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of minimal linear stabilizers</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>45</volume><issue>5</issue><spage>694</spage><epage>703</epage><pages>694-703</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0012266109050085</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2009-05, Vol.45 (5), p.694-703
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_36431806
source SpringerLink Journals - AutoHoldings
subjects Control Theory
Difference and Functional Equations
Differential equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Polynomials
Studies
title Synthesis of minimal linear stabilizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20minimal%20linear%20stabilizers&rft.jtitle=Differential%20equations&rft.au=Il%E2%80%99in,%20A.%20V.&rft.date=2009-05-01&rft.volume=45&rft.issue=5&rft.spage=694&rft.epage=703&rft.pages=694-703&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266109050085&rft_dat=%3Cproquest_cross%3E1894335701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235108113&rft_id=info:pmid/&rfr_iscdi=true