Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited

This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2008-05, Vol.101 (1-2), p.171-201
Hauptverfasser: Ferraz-Mello, Sylvio, Rodríguez, Adrián, Hussmann, Hauke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1-2
container_start_page 171
container_title Celestial mechanics and dynamical astronomy
container_volume 101
creator Ferraz-Mello, Sylvio
Rodríguez, Adrián
Hussmann, Hauke
description This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
doi_str_mv 10.1007/s10569-008-9133-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36427999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21347919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-3b92aa691e7581cdb87a8c70d3390ba508f4aa1435ba321424da53abbfe6fe7d3</originalsourceid><addsrcrecordid>eNqN0UtLxDAQB_AgCq6rH8Bb8SBeojN5NIk38Q2CIOs5pG3qVmq7Jl3d_fZmWUEQfJwyh99MhvkTso9wjADqJCLI3FAATQ1yThcbZIRSMWqE0ptkBIZxyozU22QnxmcAkGDkiDxMmsq1WR2acmj6Lmu6rGz76Gkqoht82zaDj5nrqswv-lnrOj_E02wy9dmFC-9JDVPfh2UWPH1rYsLVLtmqXRv93uc7Jo9Xl5PzG3p3f317fnZHy_T1QHlhmHO5Qa-kxrIqtHK6VFBxbqBwEnQtnEPBZeE4Q8FE5SR3RVH7vPaq4mNyuJ47C_3r3MfBvjSxTBunHft5tDwXTBlj_oQMuVAGV_DoV4iay1zkOv8PTdcHBGSJHnyjz_08dOk0loHAFByTCeEalaGPMfjazkLz4sLSIthVwnadsE0J21XCdpF62LonJts9-fA1-OemD854qCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204110525</pqid></control><display><type>article</type><title>Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited</title><source>Springer Online Journals Complete</source><creator>Ferraz-Mello, Sylvio ; Rodríguez, Adrián ; Hussmann, Hauke</creator><creatorcontrib>Ferraz-Mello, Sylvio ; Rodríguez, Adrián ; Hussmann, Hauke</creatorcontrib><description>This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-008-9133-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Eccentricity ; Energy dissipation ; Evolution ; Extrasolar planets ; Geophysics/Geodesy ; Harmonics ; Orbits ; Original Article ; Physics ; Physics and Astronomy ; Synchronism ; Synchronization ; Tidal energy ; Tidal power ; Tidal waves ; Torque</subject><ispartof>Celestial mechanics and dynamical astronomy, 2008-05, Vol.101 (1-2), p.171-201</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-3b92aa691e7581cdb87a8c70d3390ba508f4aa1435ba321424da53abbfe6fe7d3</citedby><cites>FETCH-LOGICAL-c509t-3b92aa691e7581cdb87a8c70d3390ba508f4aa1435ba321424da53abbfe6fe7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-008-9133-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-008-9133-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Ferraz-Mello, Sylvio</creatorcontrib><creatorcontrib>Rodríguez, Adrián</creatorcontrib><creatorcontrib>Hussmann, Hauke</creatorcontrib><title>Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eccentricity</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>Extrasolar planets</subject><subject>Geophysics/Geodesy</subject><subject>Harmonics</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Tidal energy</subject><subject>Tidal power</subject><subject>Tidal waves</subject><subject>Torque</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0UtLxDAQB_AgCq6rH8Bb8SBeojN5NIk38Q2CIOs5pG3qVmq7Jl3d_fZmWUEQfJwyh99MhvkTso9wjADqJCLI3FAATQ1yThcbZIRSMWqE0ptkBIZxyozU22QnxmcAkGDkiDxMmsq1WR2acmj6Lmu6rGz76Gkqoht82zaDj5nrqswv-lnrOj_E02wy9dmFC-9JDVPfh2UWPH1rYsLVLtmqXRv93uc7Jo9Xl5PzG3p3f317fnZHy_T1QHlhmHO5Qa-kxrIqtHK6VFBxbqBwEnQtnEPBZeE4Q8FE5SR3RVH7vPaq4mNyuJ47C_3r3MfBvjSxTBunHft5tDwXTBlj_oQMuVAGV_DoV4iay1zkOv8PTdcHBGSJHnyjz_08dOk0loHAFByTCeEalaGPMfjazkLz4sLSIthVwnadsE0J21XCdpF62LonJts9-fA1-OemD854qCs</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Ferraz-Mello, Sylvio</creator><creator>Rodríguez, Adrián</creator><creator>Hussmann, Hauke</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited</title><author>Ferraz-Mello, Sylvio ; Rodríguez, Adrián ; Hussmann, Hauke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-3b92aa691e7581cdb87a8c70d3390ba508f4aa1435ba321424da53abbfe6fe7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eccentricity</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>Extrasolar planets</topic><topic>Geophysics/Geodesy</topic><topic>Harmonics</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Tidal energy</topic><topic>Tidal power</topic><topic>Tidal waves</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraz-Mello, Sylvio</creatorcontrib><creatorcontrib>Rodríguez, Adrián</creatorcontrib><creatorcontrib>Hussmann, Hauke</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraz-Mello, Sylvio</au><au>Rodríguez, Adrián</au><au>Hussmann, Hauke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>101</volume><issue>1-2</issue><spage>171</spage><epage>201</epage><pages>171-201</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-008-9133-x</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2008-05, Vol.101 (1-2), p.171-201
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_miscellaneous_36427999
source Springer Online Journals Complete
subjects Aerospace Technology and Astronautics
Astrophysics
Astrophysics and Astroparticles
Classical Mechanics
Dynamical Systems and Ergodic Theory
Eccentricity
Energy dissipation
Evolution
Extrasolar planets
Geophysics/Geodesy
Harmonics
Orbits
Original Article
Physics
Physics and Astronomy
Synchronism
Synchronization
Tidal energy
Tidal power
Tidal waves
Torque
title Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tidal%20friction%20in%20close-in%20satellites%20and%20exoplanets:%20The%20Darwin%20theory%20re-visited&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Ferraz-Mello,%20Sylvio&rft.date=2008-05-01&rft.volume=101&rft.issue=1-2&rft.spage=171&rft.epage=201&rft.pages=171-201&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-008-9133-x&rft_dat=%3Cproquest_cross%3E21347919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204110525&rft_id=info:pmid/&rfr_iscdi=true