Structure and magnetic properties of Zn ferrite nanoparticles

A series of ZnxFe3-xO4(x=,0.1,0.3,0.4,0.4,0.6,0.70) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dong nan da xue xue bao 2009-09, Vol.25 (3), p.408-412
Hauptverfasser: Zhang, Yi, Wang, Kai, Ren, Zhiyan, Zhai, Ya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 3
container_start_page 408
container_title Dong nan da xue xue bao
container_volume 25
creator Zhang, Yi
Wang, Kai
Ren, Zhiyan
Zhai, Ya
description A series of ZnxFe3-xO4(x=,0.1,0.3,0.4,0.4,0.6,0.70) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetization at 5 K and 293 K increases initially when x,0.40 and subsequently decreases when x > 0.40.At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x=0.6, while it begins when x=0.80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K) model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_36423800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36423800</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-b8bf8cc8f6ad93a3a213312ce108ddff7ae24af58ab928c413d47ca7e996cbb83</originalsourceid><addsrcrecordid>eNotj71OwzAURj2ARCm8gye2SHaum9gDA6r4kyp1ABaW6vr6GgWlTrCd9ycSTN9wpKPzXYiNVgqa3tndlbgu5Vspo8B0G3H_VvNCdcksMQV5xq_EdSA552nmXAcucoryM8nIOQ-VZcI0zbgSGrnciMuIY-Hb_92Kj6fH9_1Lczg-v-4fDs2sla6Ntz5aIhs7DA4QsNUAuiXWyoYQY4_cGow7i961loyGYHrCnp3ryHsLW3H3512zfhYu9XQeCvE4YuJpKSfoTAt2vfgLySNGgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36423800</pqid></control><display><type>article</type><title>Structure and magnetic properties of Zn ferrite nanoparticles</title><source>Alma/SFX Local Collection</source><creator>Zhang, Yi ; Wang, Kai ; Ren, Zhiyan ; Zhai, Ya</creator><creatorcontrib>Zhang, Yi ; Wang, Kai ; Ren, Zhiyan ; Zhai, Ya</creatorcontrib><description>A series of ZnxFe3-xO4(x=,0.1,0.3,0.4,0.4,0.6,0.70) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetization at 5 K and 293 K increases initially when x,0.40 and subsequently decreases when x &gt; 0.40.At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x=0.6, while it begins when x=0.80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K) model.</description><identifier>ISSN: 1003-7985</identifier><language>eng</language><ispartof>Dong nan da xue xue bao, 2009-09, Vol.25 (3), p.408-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Ren, Zhiyan</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><title>Structure and magnetic properties of Zn ferrite nanoparticles</title><title>Dong nan da xue xue bao</title><description>A series of ZnxFe3-xO4(x=,0.1,0.3,0.4,0.4,0.6,0.70) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetization at 5 K and 293 K increases initially when x,0.40 and subsequently decreases when x &gt; 0.40.At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x=0.6, while it begins when x=0.80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K) model.</description><issn>1003-7985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURj2ARCm8gye2SHaum9gDA6r4kyp1ABaW6vr6GgWlTrCd9ycSTN9wpKPzXYiNVgqa3tndlbgu5Vspo8B0G3H_VvNCdcksMQV5xq_EdSA552nmXAcucoryM8nIOQ-VZcI0zbgSGrnciMuIY-Hb_92Kj6fH9_1Lczg-v-4fDs2sla6Ntz5aIhs7DA4QsNUAuiXWyoYQY4_cGow7i961loyGYHrCnp3ryHsLW3H3512zfhYu9XQeCvE4YuJpKSfoTAt2vfgLySNGgA</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Zhang, Yi</creator><creator>Wang, Kai</creator><creator>Ren, Zhiyan</creator><creator>Zhai, Ya</creator><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>Structure and magnetic properties of Zn ferrite nanoparticles</title><author>Zhang, Yi ; Wang, Kai ; Ren, Zhiyan ; Zhai, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-b8bf8cc8f6ad93a3a213312ce108ddff7ae24af58ab928c413d47ca7e996cbb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Ren, Zhiyan</creatorcontrib><creatorcontrib>Zhai, Ya</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dong nan da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Wang, Kai</au><au>Ren, Zhiyan</au><au>Zhai, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and magnetic properties of Zn ferrite nanoparticles</atitle><jtitle>Dong nan da xue xue bao</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>25</volume><issue>3</issue><spage>408</spage><epage>412</epage><pages>408-412</pages><issn>1003-7985</issn><abstract>A series of ZnxFe3-xO4(x=,0.1,0.3,0.4,0.4,0.6,0.70) nanoparticles prepared by hydrothermal method are studied by use of transmission electron microscope, X-ray diffraction, vibrating sample magnetometer, superconducting quantum interference device magnetometer and Mossbauer spectrometer. All samples present a spinel structure. The lattice constant increases with the increase in the Zn content while the grain size decreases from 18 nm to 9 nm. Moreover, the saturation magnetization at 5 K and 293 K increases initially when x,0.40 and subsequently decreases when x &gt; 0.40.At room temperature, Mossbauer spectra exhibit a change from a well-defined sextet spectrum to a doublet spectrum as the Zn content increases. The doublet spectrum begins to appear when x=0.6, while it begins when x=0.80 for the bulk materials. The results of magnetization and Curie temperature measurements indicate that the doublet spectrum is due to the surperparamagnetic state of the nanoparticles. Furthermore, the relationship between the hyperfine field variation and the cation distribution is discussed. The variation of magnetic properties is interpreted by the three-sublattice Yafet-Kittel (Y-K) model.</abstract><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1003-7985
ispartof Dong nan da xue xue bao, 2009-09, Vol.25 (3), p.408-412
issn 1003-7985
language eng
recordid cdi_proquest_miscellaneous_36423800
source Alma/SFX Local Collection
title Structure and magnetic properties of Zn ferrite nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20magnetic%20properties%20of%20Zn%20ferrite%20nanoparticles&rft.jtitle=Dong%20nan%20da%20xue%20xue%20bao&rft.au=Zhang,%20Yi&rft.date=2009-09-01&rft.volume=25&rft.issue=3&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.issn=1003-7985&rft_id=info:doi/&rft_dat=%3Cproquest%3E36423800%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36423800&rft_id=info:pmid/&rfr_iscdi=true