Transformation from the nonautonomous to standard NLS equations

In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-06, Vol.53 (2), p.213-216
Hauptverfasser: Zhao, D., He, X.-G., Luo, H.-G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue 2
container_start_page 213
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 53
creator Zhao, D.
He, X.-G.
Luo, H.-G.
description In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.
doi_str_mv 10.1140/epjd/e2009-00051-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36423176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36423176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-82c69e9cb419f5e71a40f41e34e117d13ea0a5bf81dbd01888fc50cf8a15af5c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5iywBbqi-3EmRCq-JIqGCizdXVsSJXYrZ0M_HvcFnVkupPuuVd3DyHXQO8AOJ2ZzbqZmYLSOqeUCsirEzIBznhe0qo-PfYlPScXMa4TVAheTsj9MqCL1oceh9a7zAbfZ8O3yZx3OA7e-d6PMRt8Fgd0DYYme1t8ZGY77vl4Sc4sdtFc_dUp-Xx6XM5f8sX78-v8YZFrJoohl4Uua1PrFYfaClMBcmo5GMYNQNUAM0hRrKyEZtVQkFJaLai2EkGgFZpNye0hdxP8djRxUH0btek6dCYdqFjJCwZVmcDiAOrgYwzGqk1oeww_CqjauVI7V2rvSu1dqSot3fylY9TY2eREt_G4WSR7jEmZOHbgYhq5LxPU2o_Bpcf_S_8Ft9V8Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36423176</pqid></control><display><type>article</type><title>Transformation from the nonautonomous to standard NLS equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhao, D. ; He, X.-G. ; Luo, H.-G.</creator><creatorcontrib>Zhao, D. ; He, X.-G. ; Luo, H.-G.</creatorcontrib><description>In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2009-00051-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Molecular ; Nonlinear Dynamics ; Nonlinear dynamics and nonlinear dynamical systems ; Nonlinear optics ; Optical and Plasma Physics ; Optical solitons; nonlinear guided waves ; Optics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Solitons ; Spectroscopy/Spectrometry ; Spintronics ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2009-06, Vol.53 (2), p.213-216</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-82c69e9cb419f5e71a40f41e34e117d13ea0a5bf81dbd01888fc50cf8a15af5c3</citedby><cites>FETCH-LOGICAL-c352t-82c69e9cb419f5e71a40f41e34e117d13ea0a5bf81dbd01888fc50cf8a15af5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/e2009-00051-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/e2009-00051-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21433388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, D.</creatorcontrib><creatorcontrib>He, X.-G.</creatorcontrib><creatorcontrib>Luo, H.-G.</creatorcontrib><title>Transformation from the nonautonomous to standard NLS equations</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Molecular</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Nonlinear optics</subject><subject>Optical and Plasma Physics</subject><subject>Optical solitons; nonlinear guided waves</subject><subject>Optics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Solitons</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5iywBbqi-3EmRCq-JIqGCizdXVsSJXYrZ0M_HvcFnVkupPuuVd3DyHXQO8AOJ2ZzbqZmYLSOqeUCsirEzIBznhe0qo-PfYlPScXMa4TVAheTsj9MqCL1oceh9a7zAbfZ8O3yZx3OA7e-d6PMRt8Fgd0DYYme1t8ZGY77vl4Sc4sdtFc_dUp-Xx6XM5f8sX78-v8YZFrJoohl4Uua1PrFYfaClMBcmo5GMYNQNUAM0hRrKyEZtVQkFJaLai2EkGgFZpNye0hdxP8djRxUH0btek6dCYdqFjJCwZVmcDiAOrgYwzGqk1oeww_CqjauVI7V2rvSu1dqSot3fylY9TY2eREt_G4WSR7jEmZOHbgYhq5LxPU2o_Bpcf_S_8Ft9V8Nw</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Zhao, D.</creator><creator>He, X.-G.</creator><creator>Luo, H.-G.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Transformation from the nonautonomous to standard NLS equations</title><author>Zhao, D. ; He, X.-G. ; Luo, H.-G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-82c69e9cb419f5e71a40f41e34e117d13ea0a5bf81dbd01888fc50cf8a15af5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Molecular</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Nonlinear optics</topic><topic>Optical and Plasma Physics</topic><topic>Optical solitons; nonlinear guided waves</topic><topic>Optics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Solitons</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, D.</creatorcontrib><creatorcontrib>He, X.-G.</creatorcontrib><creatorcontrib>Luo, H.-G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, D.</au><au>He, X.-G.</au><au>Luo, H.-G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation from the nonautonomous to standard NLS equations</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>53</volume><issue>2</issue><spage>213</spage><epage>216</epage><pages>213-216</pages><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>In this paper we show a systematical method to obtain exact solutions of the nonautonomous nonlinear Schrödinger (NLS) equation. An integrable condition is first obtained by the Painlevé analysis, which is shown to be consistent with that obtained by the Lax pair method. Under this condition, we present a general transformation, which can directly convert all allowed exact solutions of the standard NLS equation into the corresponding exact solutions of the nonautonomous NLS equation. The method is quite powerful since the standard NLS equation has been well studied in the past decades and its exact solutions are vast in the literature. The result provides an effective way to control the soliton dynamics. Finally, the fundamental bright and dark solitons are taken as examples to demonstrate its explicit applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjd/e2009-00051-7</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2009-06, Vol.53 (2), p.213-216
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_miscellaneous_36423176
source Springer Nature - Complete Springer Journals
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Molecular
Nonlinear Dynamics
Nonlinear dynamics and nonlinear dynamical systems
Nonlinear optics
Optical and Plasma Physics
Optical solitons
nonlinear guided waves
Optics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Solitons
Spectroscopy/Spectrometry
Spintronics
Statistical physics, thermodynamics, and nonlinear dynamical systems
title Transformation from the nonautonomous to standard NLS equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20from%20the%20nonautonomous%20to%20standard%20NLS%20equations&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Zhao,%20D.&rft.date=2009-06-01&rft.volume=53&rft.issue=2&rft.spage=213&rft.epage=216&rft.pages=213-216&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2009-00051-7&rft_dat=%3Cproquest_cross%3E36423176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36423176&rft_id=info:pmid/&rfr_iscdi=true