Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model
An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change assoc...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2009-12, Vol.66 (12), p.3707-3720 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3720 |
---|---|
container_issue | 12 |
container_start_page | 3707 |
container_title | Journal of the atmospheric sciences |
container_volume | 66 |
creator | GANG CHEN PLUMB, R. Alan |
description | An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2. |
doi_str_mv | 10.1175/2009jas3165.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36420366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928275331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-565e2bc3e369a83b4bd8e6c62980404b163ecdcc15e671b1468bdd6009a8f1923</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQKrjVHr2HlvY2NnnJZJLjIv5YUVRsL70MmeRNzXY2s01moetfb1alh0LpuwQenzze40vIEWfHnDf1F2DMLG0WXNXH_A2Z8RpYxaQyb8mMMYBKGtD75F3OS1YKGj4j_d3Gxin02xB_0OkB6an3W3qG6DvrflIb_XP3FlMOecLokI79c-v7GO1AF9HjbxpikXTh0Q7hET2dT6sxrx8wBUevR4_DIdnr7ZDx_et7QL6dnX49uaiubs4XJ_OrykltpqpWNULnBAplrBad7LxG5RQYzSSTHVcCnXeO16ga3nGpdOe9Kndb3XMD4oB8fpm7TuOvDeapXYXscBhsxHGTW6EkMKHUfyFwAKOMKPDjX3A5blI5vRgNzOjdbkV9-KcSqmaNaHRB1Qtyacw5Yd-uU1jZtG05a3cJtrsEL-f3uwRbXvyn16E2Ozv0yUYX8p9PACBZw2vxBAJdmL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236507378</pqid></control><display><type>article</type><title>Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>GANG CHEN ; PLUMB, R. Alan</creator><creatorcontrib>GANG CHEN ; PLUMB, R. Alan</creatorcontrib><description>An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/2009jas3165.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric models ; Atmospheric sciences ; Climate ; Climate change ; Climatology ; Control systems ; Control theory ; Damping ; Earth, ocean, space ; Eddies ; Exact sciences and technology ; External geophysics ; Feedback ; Friction ; General circulation models ; Marine ; Mathematical models ; Meteorology ; Modelling ; Momentum ; Physics of the high neutral atmosphere ; Strength ; Time ; Torque ; Vertical wind shear ; Vortices ; Wind ; Wind shear ; Winter ; Zonal index ; Zonal winds</subject><ispartof>Journal of the atmospheric sciences, 2009-12, Vol.66 (12), p.3707-3720</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Dec 2009</rights><rights>Copyright American Meteorological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-565e2bc3e369a83b4bd8e6c62980404b163ecdcc15e671b1468bdd6009a8f1923</citedby><cites>FETCH-LOGICAL-c489t-565e2bc3e369a83b4bd8e6c62980404b163ecdcc15e671b1468bdd6009a8f1923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22240715$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GANG CHEN</creatorcontrib><creatorcontrib>PLUMB, R. Alan</creatorcontrib><title>Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model</title><title>Journal of the atmospheric sciences</title><description>An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.</description><subject>Atmospheric models</subject><subject>Atmospheric sciences</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Damping</subject><subject>Earth, ocean, space</subject><subject>Eddies</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Feedback</subject><subject>Friction</subject><subject>General circulation models</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Momentum</subject><subject>Physics of the high neutral atmosphere</subject><subject>Strength</subject><subject>Time</subject><subject>Torque</subject><subject>Vertical wind shear</subject><subject>Vortices</subject><subject>Wind</subject><subject>Wind shear</subject><subject>Winter</subject><subject>Zonal index</subject><subject>Zonal winds</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9LHDEUB_BQKrjVHr2HlvY2NnnJZJLjIv5YUVRsL70MmeRNzXY2s01moetfb1alh0LpuwQenzze40vIEWfHnDf1F2DMLG0WXNXH_A2Z8RpYxaQyb8mMMYBKGtD75F3OS1YKGj4j_d3Gxin02xB_0OkB6an3W3qG6DvrflIb_XP3FlMOecLokI79c-v7GO1AF9HjbxpikXTh0Q7hET2dT6sxrx8wBUevR4_DIdnr7ZDx_et7QL6dnX49uaiubs4XJ_OrykltpqpWNULnBAplrBad7LxG5RQYzSSTHVcCnXeO16ga3nGpdOe9Kndb3XMD4oB8fpm7TuOvDeapXYXscBhsxHGTW6EkMKHUfyFwAKOMKPDjX3A5blI5vRgNzOjdbkV9-KcSqmaNaHRB1Qtyacw5Yd-uU1jZtG05a3cJtrsEL-f3uwRbXvyn16E2Ozv0yUYX8p9PACBZw2vxBAJdmL8</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>GANG CHEN</creator><creator>PLUMB, R. Alan</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20091201</creationdate><title>Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model</title><author>GANG CHEN ; PLUMB, R. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-565e2bc3e369a83b4bd8e6c62980404b163ecdcc15e671b1468bdd6009a8f1923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric models</topic><topic>Atmospheric sciences</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Damping</topic><topic>Earth, ocean, space</topic><topic>Eddies</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Feedback</topic><topic>Friction</topic><topic>General circulation models</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Momentum</topic><topic>Physics of the high neutral atmosphere</topic><topic>Strength</topic><topic>Time</topic><topic>Torque</topic><topic>Vertical wind shear</topic><topic>Vortices</topic><topic>Wind</topic><topic>Wind shear</topic><topic>Winter</topic><topic>Zonal index</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GANG CHEN</creatorcontrib><creatorcontrib>PLUMB, R. Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GANG CHEN</au><au>PLUMB, R. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>66</volume><issue>12</issue><spage>3707</spage><epage>3720</epage><pages>3707-3720</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2009jas3165.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2009-12, Vol.66 (12), p.3707-3720 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_miscellaneous_36420366 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atmospheric models Atmospheric sciences Climate Climate change Climatology Control systems Control theory Damping Earth, ocean, space Eddies Exact sciences and technology External geophysics Feedback Friction General circulation models Marine Mathematical models Meteorology Modelling Momentum Physics of the high neutral atmosphere Strength Time Torque Vertical wind shear Vortices Wind Wind shear Winter Zonal index Zonal winds |
title | Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Eddy%20Feedback%20and%20the%20Persistence%20of%20the%20Zonal%20Index%20in%20an%20Idealized%20Atmospheric%20Model&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=GANG%20CHEN&rft.date=2009-12-01&rft.volume=66&rft.issue=12&rft.spage=3707&rft.epage=3720&rft.pages=3707-3720&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/2009jas3165.1&rft_dat=%3Cproquest_cross%3E1928275331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236507378&rft_id=info:pmid/&rfr_iscdi=true |