A Particle Filter for Inverse Lagrangian Prediction Problems

The authors present a numerical method for the inverse Lagrangian prediction problem, which addresses retrospective estimation of drifter trajectories through a turbulent flow, given their final positions and some knowledge of the flow field. Of particular interest is probabilistic estimation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2010-02, Vol.27 (2), p.371-384
Hauptverfasser: Chin, T Mike, Mariano, Arthur J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 2
container_start_page 371
container_title Journal of atmospheric and oceanic technology
container_volume 27
creator Chin, T Mike
Mariano, Arthur J
description The authors present a numerical method for the inverse Lagrangian prediction problem, which addresses retrospective estimation of drifter trajectories through a turbulent flow, given their final positions and some knowledge of the flow field. Of particular interest is probabilistic estimation of the origin (or launch site) of drifters for practical applications in search and rescue operations, drifting sensor array design, and biochemical source location. A typical solution involves a Monte Carlo simulation of an ensemble of Lagrangian trajectories backward in time using the known final locations, a set of velocity estimates, and a stochastic model for the unresolved flow components. Because of the exponential dispersion of the trajectories, however, the distribution of the drifter locations tends to be too diffuse to be able to reliably locate the launch site. A particle filter that constrains the drifter ensemble according to the empirical dispersion characteristics of the flow field is examined. Using the filtering method, launch-site prediction cases with and without a dispersion constraint are compared in idealized as well as realistic scenarios. It is shown that the ensemble with the dispersion constraint can locate the launch site more specifically and accurately than the unconstrained ensemble.
doi_str_mv 10.1175/2009JTECHO675.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36416151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642223211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-e749c471f01270887fa1e1d840ba83e7c765977a98564f233246a9f38c62fe323</originalsourceid><addsrcrecordid>eNqF0c9LAkEUB_AhCjLr3HXpEF1W35vfC11ENA1BD3YexnFGVtZdm1mD_vsUu9ShTu8dPnzhy5eQe4QeohJ9ClC8LkfDyVwq0cML0kFBIQdO5SXpgGJFDkLRa3KT0hYAkKHskOdBtrCxLV3ls3FZtT5moYnZtP7wMflsZjfR1pvS1tki-nXp2rI5vc2q8rt0S66CrZK_-75d8jYeLYeTfDZ_mQ4Hs9xx4G3uFS8cVxgAqQKtVbDoca05rKxmXjklRaGULbSQPFDGKJe2CEw7SYNnlHXJ4zl3H5v3g0-t2ZXJ-aqytW8OyTDJUaLAfyFFBlrpU-LTnxAlp5QyiqfMh1902xxifexrjkRgwSkcUf-MXGxSij6YfSx3Nn4aBHOax_yYxyD7AqKgfzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222519420</pqid></control><display><type>article</type><title>A Particle Filter for Inverse Lagrangian Prediction Problems</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chin, T Mike ; Mariano, Arthur J</creator><creatorcontrib>Chin, T Mike ; Mariano, Arthur J</creatorcontrib><description>The authors present a numerical method for the inverse Lagrangian prediction problem, which addresses retrospective estimation of drifter trajectories through a turbulent flow, given their final positions and some knowledge of the flow field. Of particular interest is probabilistic estimation of the origin (or launch site) of drifters for practical applications in search and rescue operations, drifting sensor array design, and biochemical source location. A typical solution involves a Monte Carlo simulation of an ensemble of Lagrangian trajectories backward in time using the known final locations, a set of velocity estimates, and a stochastic model for the unresolved flow components. Because of the exponential dispersion of the trajectories, however, the distribution of the drifter locations tends to be too diffuse to be able to reliably locate the launch site. A particle filter that constrains the drifter ensemble according to the empirical dispersion characteristics of the flow field is examined. Using the filtering method, launch-site prediction cases with and without a dispersion constraint are compared in idealized as well as realistic scenarios. It is shown that the ensemble with the dispersion constraint can locate the launch site more specifically and accurately than the unconstrained ensemble.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/2009JTECHO675.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Computer simulation ; Dispersions ; Drift ; General circulation models ; Launches ; Marine ; Mathematical models ; Meteorology ; Monte Carlo methods ; Monte Carlo simulation ; Position (location) ; Problems ; Sampling techniques ; Search and rescue ; Simulation ; Stochastic models ; Studies ; Trajectories ; Turbulence models ; Turbulent flow ; Velocity</subject><ispartof>Journal of atmospheric and oceanic technology, 2010-02, Vol.27 (2), p.371-384</ispartof><rights>Copyright American Meteorological Society Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-e749c471f01270887fa1e1d840ba83e7c765977a98564f233246a9f38c62fe323</citedby><cites>FETCH-LOGICAL-c404t-e749c471f01270887fa1e1d840ba83e7c765977a98564f233246a9f38c62fe323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Chin, T Mike</creatorcontrib><creatorcontrib>Mariano, Arthur J</creatorcontrib><title>A Particle Filter for Inverse Lagrangian Prediction Problems</title><title>Journal of atmospheric and oceanic technology</title><description>The authors present a numerical method for the inverse Lagrangian prediction problem, which addresses retrospective estimation of drifter trajectories through a turbulent flow, given their final positions and some knowledge of the flow field. Of particular interest is probabilistic estimation of the origin (or launch site) of drifters for practical applications in search and rescue operations, drifting sensor array design, and biochemical source location. A typical solution involves a Monte Carlo simulation of an ensemble of Lagrangian trajectories backward in time using the known final locations, a set of velocity estimates, and a stochastic model for the unresolved flow components. Because of the exponential dispersion of the trajectories, however, the distribution of the drifter locations tends to be too diffuse to be able to reliably locate the launch site. A particle filter that constrains the drifter ensemble according to the empirical dispersion characteristics of the flow field is examined. Using the filtering method, launch-site prediction cases with and without a dispersion constraint are compared in idealized as well as realistic scenarios. It is shown that the ensemble with the dispersion constraint can locate the launch site more specifically and accurately than the unconstrained ensemble.</description><subject>Computer simulation</subject><subject>Dispersions</subject><subject>Drift</subject><subject>General circulation models</subject><subject>Launches</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Position (location)</subject><subject>Problems</subject><subject>Sampling techniques</subject><subject>Search and rescue</subject><subject>Simulation</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Trajectories</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9LAkEUB_AhCjLr3HXpEF1W35vfC11ENA1BD3YexnFGVtZdm1mD_vsUu9ShTu8dPnzhy5eQe4QeohJ9ClC8LkfDyVwq0cML0kFBIQdO5SXpgGJFDkLRa3KT0hYAkKHskOdBtrCxLV3ls3FZtT5moYnZtP7wMflsZjfR1pvS1tki-nXp2rI5vc2q8rt0S66CrZK_-75d8jYeLYeTfDZ_mQ4Hs9xx4G3uFS8cVxgAqQKtVbDoca05rKxmXjklRaGULbSQPFDGKJe2CEw7SYNnlHXJ4zl3H5v3g0-t2ZXJ-aqytW8OyTDJUaLAfyFFBlrpU-LTnxAlp5QyiqfMh1902xxifexrjkRgwSkcUf-MXGxSij6YfSx3Nn4aBHOax_yYxyD7AqKgfzE</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chin, T Mike</creator><creator>Mariano, Arthur J</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100201</creationdate><title>A Particle Filter for Inverse Lagrangian Prediction Problems</title><author>Chin, T Mike ; Mariano, Arthur J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-e749c471f01270887fa1e1d840ba83e7c765977a98564f233246a9f38c62fe323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Dispersions</topic><topic>Drift</topic><topic>General circulation models</topic><topic>Launches</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Position (location)</topic><topic>Problems</topic><topic>Sampling techniques</topic><topic>Search and rescue</topic><topic>Simulation</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Trajectories</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin, T Mike</creatorcontrib><creatorcontrib>Mariano, Arthur J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin, T Mike</au><au>Mariano, Arthur J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Particle Filter for Inverse Lagrangian Prediction Problems</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>27</volume><issue>2</issue><spage>371</spage><epage>384</epage><pages>371-384</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The authors present a numerical method for the inverse Lagrangian prediction problem, which addresses retrospective estimation of drifter trajectories through a turbulent flow, given their final positions and some knowledge of the flow field. Of particular interest is probabilistic estimation of the origin (or launch site) of drifters for practical applications in search and rescue operations, drifting sensor array design, and biochemical source location. A typical solution involves a Monte Carlo simulation of an ensemble of Lagrangian trajectories backward in time using the known final locations, a set of velocity estimates, and a stochastic model for the unresolved flow components. Because of the exponential dispersion of the trajectories, however, the distribution of the drifter locations tends to be too diffuse to be able to reliably locate the launch site. A particle filter that constrains the drifter ensemble according to the empirical dispersion characteristics of the flow field is examined. Using the filtering method, launch-site prediction cases with and without a dispersion constraint are compared in idealized as well as realistic scenarios. It is shown that the ensemble with the dispersion constraint can locate the launch site more specifically and accurately than the unconstrained ensemble.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/2009JTECHO675.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2010-02, Vol.27 (2), p.371-384
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_miscellaneous_36416151
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Computer simulation
Dispersions
Drift
General circulation models
Launches
Marine
Mathematical models
Meteorology
Monte Carlo methods
Monte Carlo simulation
Position (location)
Problems
Sampling techniques
Search and rescue
Simulation
Stochastic models
Studies
Trajectories
Turbulence models
Turbulent flow
Velocity
title A Particle Filter for Inverse Lagrangian Prediction Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Particle%20Filter%20for%20Inverse%20Lagrangian%20Prediction%20Problems&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Chin,%20T%20Mike&rft.date=2010-02-01&rft.volume=27&rft.issue=2&rft.spage=371&rft.epage=384&rft.pages=371-384&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/2009JTECHO675.1&rft_dat=%3Cproquest_cross%3E1642223211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222519420&rft_id=info:pmid/&rfr_iscdi=true