Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case

The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2009-04, Vol.49 (4), p.729-742
Hauptverfasser: Belotserkovskii, O. M., Denisenko, V. V., Konyukhov, A. V., Oparin, A. M., Troshkin, O. V., Chechetkin, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 4
container_start_page 729
container_title Computational mathematics and mathematical physics
container_volume 49
creator Belotserkovskii, O. M.
Denisenko, V. V.
Konyukhov, A. V.
Oparin, A. M.
Troshkin, O. V.
Chechetkin, V. M.
description The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.
doi_str_mv 10.1134/S0965542509040162
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36409079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36409079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a0c7a44eee5aceaf69e0329657f08b4f50cbd1626ba2eb6c51ca61288780b1113</originalsourceid><addsrcrecordid>eNp1kD9PwzAUxC0EEqXwAdgsBraA7dhOMqKKf1IFQ8scOe4LuHLiYjuq8u1xWyQkENMb7nene4fQJSU3lOb8dkEqKQRnglSEEyrZEZpQIUQmpWTHaLKTs51-is5CWJOEVGU-QYuXoQNvtLI4RNUYa-KIVa_sGEzArsXxA_BSjdb5bOYGiBFwa90Wm34vxa3LVqaDPhiXXFirAOfopFU2wMX3naK3h_vl7Cmbvz4-z-7mmeaUxUwRXSjOAUAoDaqVFZCcpZ5FS8qGt4LoZpU-kY1i0EgtqFaSsrIsStLQ9PUUXR9yN959DhBi3ZmgwVrVgxtCnUue1iiqBF79Atdu8KluqBlLlCz3ED1A2rsQPLT1xptO-bGmpN5tXP_ZOHnYwRMS27-D_wn-3_QFTih9zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223646879</pqid></control><display><type>article</type><title>Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case</title><source>SpringerLink Journals</source><creator>Belotserkovskii, O. M. ; Denisenko, V. V. ; Konyukhov, A. V. ; Oparin, A. M. ; Troshkin, O. V. ; Chechetkin, V. M.</creator><creatorcontrib>Belotserkovskii, O. M. ; Denisenko, V. V. ; Konyukhov, A. V. ; Oparin, A. M. ; Troshkin, O. V. ; Chechetkin, V. M.</creatorcontrib><description>The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542509040162</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Applied mathematics ; Approximation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Eulers equations ; Hypotheses ; Mathematics ; Mathematics and Statistics ; Mechanics ; Reynolds number ; Simulation ; Studies ; Temperature ; Turbulence ; Velocity ; Viscosity ; Vortices</subject><ispartof>Computational mathematics and mathematical physics, 2009-04, Vol.49 (4), p.729-742</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a0c7a44eee5aceaf69e0329657f08b4f50cbd1626ba2eb6c51ca61288780b1113</citedby><cites>FETCH-LOGICAL-c412t-a0c7a44eee5aceaf69e0329657f08b4f50cbd1626ba2eb6c51ca61288780b1113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542509040162$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542509040162$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Belotserkovskii, O. M.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Konyukhov, A. V.</creatorcontrib><creatorcontrib>Oparin, A. M.</creatorcontrib><creatorcontrib>Troshkin, O. V.</creatorcontrib><creatorcontrib>Chechetkin, V. M.</creatorcontrib><title>Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Eulers equations</subject><subject>Hypotheses</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Studies</subject><subject>Temperature</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD9PwzAUxC0EEqXwAdgsBraA7dhOMqKKf1IFQ8scOe4LuHLiYjuq8u1xWyQkENMb7nene4fQJSU3lOb8dkEqKQRnglSEEyrZEZpQIUQmpWTHaLKTs51-is5CWJOEVGU-QYuXoQNvtLI4RNUYa-KIVa_sGEzArsXxA_BSjdb5bOYGiBFwa90Wm34vxa3LVqaDPhiXXFirAOfopFU2wMX3naK3h_vl7Cmbvz4-z-7mmeaUxUwRXSjOAUAoDaqVFZCcpZ5FS8qGt4LoZpU-kY1i0EgtqFaSsrIsStLQ9PUUXR9yN959DhBi3ZmgwVrVgxtCnUue1iiqBF79Atdu8KluqBlLlCz3ED1A2rsQPLT1xptO-bGmpN5tXP_ZOHnYwRMS27-D_wn-3_QFTih9zQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Belotserkovskii, O. M.</creator><creator>Denisenko, V. V.</creator><creator>Konyukhov, A. V.</creator><creator>Oparin, A. M.</creator><creator>Troshkin, O. V.</creator><creator>Chechetkin, V. M.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090401</creationdate><title>Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case</title><author>Belotserkovskii, O. M. ; Denisenko, V. V. ; Konyukhov, A. V. ; Oparin, A. M. ; Troshkin, O. V. ; Chechetkin, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a0c7a44eee5aceaf69e0329657f08b4f50cbd1626ba2eb6c51ca61288780b1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Eulers equations</topic><topic>Hypotheses</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Studies</topic><topic>Temperature</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belotserkovskii, O. M.</creatorcontrib><creatorcontrib>Denisenko, V. V.</creatorcontrib><creatorcontrib>Konyukhov, A. V.</creatorcontrib><creatorcontrib>Oparin, A. M.</creatorcontrib><creatorcontrib>Troshkin, O. V.</creatorcontrib><creatorcontrib>Chechetkin, V. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belotserkovskii, O. M.</au><au>Denisenko, V. V.</au><au>Konyukhov, A. V.</au><au>Oparin, A. M.</au><au>Troshkin, O. V.</au><au>Chechetkin, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>49</volume><issue>4</issue><spage>729</spage><epage>742</epage><pages>729-742</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542509040162</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2009-04, Vol.49 (4), p.729-742
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_36409079
source SpringerLink Journals
subjects Applied mathematics
Approximation
Computational mathematics
Computational Mathematics and Numerical Analysis
Eulers equations
Hypotheses
Mathematics
Mathematics and Statistics
Mechanics
Reynolds number
Simulation
Studies
Temperature
Turbulence
Velocity
Viscosity
Vortices
title Numerical stability analysis of the Taylor-Couette flow in the two-dimensional case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20stability%20analysis%20of%20the%20Taylor-Couette%20flow%20in%20the%20two-dimensional%20case&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Belotserkovskii,%20O.%20M.&rft.date=2009-04-01&rft.volume=49&rft.issue=4&rft.spage=729&rft.epage=742&rft.pages=729-742&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542509040162&rft_dat=%3Cproquest_cross%3E36409079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223646879&rft_id=info:pmid/&rfr_iscdi=true