Pore space percolation in sea ice single crystals
We have imaged sea ice single crystals with X‐ray computed tomography, and characterized the thermal evolution of the pore space with percolation theory. Between −18°C and −3°C the porosity ranged from 2 to 12% and we found arrays of near‐parallel intracrystalline brine layers whose connectivity and...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2009-12, Vol.114 (C12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | C12 |
container_start_page | |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 114 |
creator | Pringle, D. J. Miner, J. E. Eicken, H. Golden, K. M. |
description | We have imaged sea ice single crystals with X‐ray computed tomography, and characterized the thermal evolution of the pore space with percolation theory. Between −18°C and −3°C the porosity ranged from 2 to 12% and we found arrays of near‐parallel intracrystalline brine layers whose connectivity and complex morphology varied with temperature. We have computed key porosity‐dependent functions of classical percolation theory directly from the thermally driven pore space evolution of an individual sample. This analysis is novel for a natural material and provides the first direct demonstration of a connectivity threshold in the brine microstructure of sea ice. In previous works this critical behavior has been inferred indirectly from bulk property measurements in polycrystalline samples. From a finite‐size scaling analysis we find a vertical critical porosity pc,v = 4.6 ± 0.7%. We find lateral anisotropy with pc,pll = 9 ± 2% parallel to the layers and pc,perp = 14 ± 4% perpendicular to them. Lateral connectivity is established at higher brine volumes by the formation of thin necks between the brine layers. We relate these results to measured anisotropy in the bulk dc conductivity and fluid permeability using a dual porosity conceptual model. Our results shed new light on the complex microstructure of sea ice, highlighting single crystal anisotropy and a step toward a realistic transport property model for sea ice based on percolation theory. We present full experimental details of our imaging and segmentation methodology based on a phase relation formulation more widely applicable to ice‐solute systems. |
doi_str_mv | 10.1029/2008JC005145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36404351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919963420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6613-d899a65e228bae856c44c574924148abce65f0ab67af85d805ad0d6382ffe5dd3</originalsourceid><addsrcrecordid>eNqF0d9rFDEQB_AgFjxq3_wDFkHxwbWTSSabfZTDnpb-ED3xMcxls5K63b0md-j996ZcKdKHNi8D4fOd_BghXkn4IAHbYwSwp3MAkpqeiRlKMjUi4HMxA6ltDYjNC3GU8xWUpclokDMhv04pVHnNPlTrkPw08CZOYxXHKgeuYtnOcfw1hMqnXd7wkF-Kg76UcHRXD8WPk0_L-ef67HLxZf7xrGZjpKo727ZsKCDaFQdLxmvtqdEt6nIbXvlgqAdemYZ7S50F4g46oyz2faCuU4fi7b7vOk0325A37jpmH4aBxzBts1PlAVqRfBKiVKjB3sJ3j0LZyrY1SiM8TY1GVJpQF_r6Ab2atmksX-OsASLdaCro_R75NOWcQu_WKV5z2jkJ7nZ87v_xFf7mridnz0OfePQx32fK0Q1ZbYtTe_cnDmH3aE93uvg2lxKNKql6n4p5E_7epzj9dqYpnd3Pi4U7v_i-pOXJuSP1D3Z_s4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860554745</pqid></control><display><type>article</type><title>Pore space percolation in sea ice single crystals</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Pringle, D. J. ; Miner, J. E. ; Eicken, H. ; Golden, K. M.</creator><creatorcontrib>Pringle, D. J. ; Miner, J. E. ; Eicken, H. ; Golden, K. M.</creatorcontrib><description>We have imaged sea ice single crystals with X‐ray computed tomography, and characterized the thermal evolution of the pore space with percolation theory. Between −18°C and −3°C the porosity ranged from 2 to 12% and we found arrays of near‐parallel intracrystalline brine layers whose connectivity and complex morphology varied with temperature. We have computed key porosity‐dependent functions of classical percolation theory directly from the thermally driven pore space evolution of an individual sample. This analysis is novel for a natural material and provides the first direct demonstration of a connectivity threshold in the brine microstructure of sea ice. In previous works this critical behavior has been inferred indirectly from bulk property measurements in polycrystalline samples. From a finite‐size scaling analysis we find a vertical critical porosity pc,v = 4.6 ± 0.7%. We find lateral anisotropy with pc,pll = 9 ± 2% parallel to the layers and pc,perp = 14 ± 4% perpendicular to them. Lateral connectivity is established at higher brine volumes by the formation of thin necks between the brine layers. We relate these results to measured anisotropy in the bulk dc conductivity and fluid permeability using a dual porosity conceptual model. Our results shed new light on the complex microstructure of sea ice, highlighting single crystal anisotropy and a step toward a realistic transport property model for sea ice based on percolation theory. We present full experimental details of our imaging and segmentation methodology based on a phase relation formulation more widely applicable to ice‐solute systems.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2008JC005145</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Brines ; Computed tomography ; Cryosphere ; Crystals ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Geophysics ; Ice ; Marine ; Mathematical models ; Microstructure ; Oceans ; Percolation ; Percolation theory ; Physical properties ; Porosity ; Rocks ; Salt water ; Sea ice ; sea ice microstructure ; Single crystals ; X-ray tomography</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2009-12, Vol.114 (C12), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6613-d899a65e228bae856c44c574924148abce65f0ab67af85d805ad0d6382ffe5dd3</citedby><cites>FETCH-LOGICAL-a6613-d899a65e228bae856c44c574924148abce65f0ab67af85d805ad0d6382ffe5dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JC005145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JC005145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22375848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pringle, D. J.</creatorcontrib><creatorcontrib>Miner, J. E.</creatorcontrib><creatorcontrib>Eicken, H.</creatorcontrib><creatorcontrib>Golden, K. M.</creatorcontrib><title>Pore space percolation in sea ice single crystals</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We have imaged sea ice single crystals with X‐ray computed tomography, and characterized the thermal evolution of the pore space with percolation theory. Between −18°C and −3°C the porosity ranged from 2 to 12% and we found arrays of near‐parallel intracrystalline brine layers whose connectivity and complex morphology varied with temperature. We have computed key porosity‐dependent functions of classical percolation theory directly from the thermally driven pore space evolution of an individual sample. This analysis is novel for a natural material and provides the first direct demonstration of a connectivity threshold in the brine microstructure of sea ice. In previous works this critical behavior has been inferred indirectly from bulk property measurements in polycrystalline samples. From a finite‐size scaling analysis we find a vertical critical porosity pc,v = 4.6 ± 0.7%. We find lateral anisotropy with pc,pll = 9 ± 2% parallel to the layers and pc,perp = 14 ± 4% perpendicular to them. Lateral connectivity is established at higher brine volumes by the formation of thin necks between the brine layers. We relate these results to measured anisotropy in the bulk dc conductivity and fluid permeability using a dual porosity conceptual model. Our results shed new light on the complex microstructure of sea ice, highlighting single crystal anisotropy and a step toward a realistic transport property model for sea ice based on percolation theory. We present full experimental details of our imaging and segmentation methodology based on a phase relation formulation more widely applicable to ice‐solute systems.</description><subject>Anisotropy</subject><subject>Brines</subject><subject>Computed tomography</subject><subject>Cryosphere</subject><subject>Crystals</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Oceans</subject><subject>Percolation</subject><subject>Percolation theory</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Rocks</subject><subject>Salt water</subject><subject>Sea ice</subject><subject>sea ice microstructure</subject><subject>Single crystals</subject><subject>X-ray tomography</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0d9rFDEQB_AgFjxq3_wDFkHxwbWTSSabfZTDnpb-ED3xMcxls5K63b0md-j996ZcKdKHNi8D4fOd_BghXkn4IAHbYwSwp3MAkpqeiRlKMjUi4HMxA6ltDYjNC3GU8xWUpclokDMhv04pVHnNPlTrkPw08CZOYxXHKgeuYtnOcfw1hMqnXd7wkF-Kg76UcHRXD8WPk0_L-ef67HLxZf7xrGZjpKo727ZsKCDaFQdLxmvtqdEt6nIbXvlgqAdemYZ7S50F4g46oyz2faCuU4fi7b7vOk0325A37jpmH4aBxzBts1PlAVqRfBKiVKjB3sJ3j0LZyrY1SiM8TY1GVJpQF_r6Ab2atmksX-OsASLdaCro_R75NOWcQu_WKV5z2jkJ7nZ87v_xFf7mridnz0OfePQx32fK0Q1ZbYtTe_cnDmH3aE93uvg2lxKNKql6n4p5E_7epzj9dqYpnd3Pi4U7v_i-pOXJuSP1D3Z_s4s</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Pringle, D. J.</creator><creator>Miner, J. E.</creator><creator>Eicken, H.</creator><creator>Golden, K. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>7SM</scope></search><sort><creationdate>200912</creationdate><title>Pore space percolation in sea ice single crystals</title><author>Pringle, D. J. ; Miner, J. E. ; Eicken, H. ; Golden, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6613-d899a65e228bae856c44c574924148abce65f0ab67af85d805ad0d6382ffe5dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropy</topic><topic>Brines</topic><topic>Computed tomography</topic><topic>Cryosphere</topic><topic>Crystals</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Oceans</topic><topic>Percolation</topic><topic>Percolation theory</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Rocks</topic><topic>Salt water</topic><topic>Sea ice</topic><topic>sea ice microstructure</topic><topic>Single crystals</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pringle, D. J.</creatorcontrib><creatorcontrib>Miner, J. E.</creatorcontrib><creatorcontrib>Eicken, H.</creatorcontrib><creatorcontrib>Golden, K. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pringle, D. J.</au><au>Miner, J. E.</au><au>Eicken, H.</au><au>Golden, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore space percolation in sea ice single crystals</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-12</date><risdate>2009</risdate><volume>114</volume><issue>C12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>We have imaged sea ice single crystals with X‐ray computed tomography, and characterized the thermal evolution of the pore space with percolation theory. Between −18°C and −3°C the porosity ranged from 2 to 12% and we found arrays of near‐parallel intracrystalline brine layers whose connectivity and complex morphology varied with temperature. We have computed key porosity‐dependent functions of classical percolation theory directly from the thermally driven pore space evolution of an individual sample. This analysis is novel for a natural material and provides the first direct demonstration of a connectivity threshold in the brine microstructure of sea ice. In previous works this critical behavior has been inferred indirectly from bulk property measurements in polycrystalline samples. From a finite‐size scaling analysis we find a vertical critical porosity pc,v = 4.6 ± 0.7%. We find lateral anisotropy with pc,pll = 9 ± 2% parallel to the layers and pc,perp = 14 ± 4% perpendicular to them. Lateral connectivity is established at higher brine volumes by the formation of thin necks between the brine layers. We relate these results to measured anisotropy in the bulk dc conductivity and fluid permeability using a dual porosity conceptual model. Our results shed new light on the complex microstructure of sea ice, highlighting single crystal anisotropy and a step toward a realistic transport property model for sea ice based on percolation theory. We present full experimental details of our imaging and segmentation methodology based on a phase relation formulation more widely applicable to ice‐solute systems.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JC005145</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2009-12, Vol.114 (C12), p.n/a |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_36404351 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | Anisotropy Brines Computed tomography Cryosphere Crystals Earth sciences Earth, ocean, space Exact sciences and technology Geology Geophysics Ice Marine Mathematical models Microstructure Oceans Percolation Percolation theory Physical properties Porosity Rocks Salt water Sea ice sea ice microstructure Single crystals X-ray tomography |
title | Pore space percolation in sea ice single crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20space%20percolation%20in%20sea%20ice%20single%20crystals&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Pringle,%20D.%20J.&rft.date=2009-12&rft.volume=114&rft.issue=C12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JC005145&rft_dat=%3Cproquest_cross%3E1919963420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860554745&rft_id=info:pmid/&rfr_iscdi=true |