Proton aurora related to intervals of pulsations of diminishing periods

Geomagnetic pulsations in the Pc1 frequency range are believed to be an indicator of electromagnetic ion cyclotron waves arriving from the equatorial magnetosphere, where the waves are generated because of a cyclotron instability of the anisotropic distribution of ring current ions. Proton precipita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. A. Space Physics 2009-12, Vol.114 (A12), p.n/a
Hauptverfasser: Yahnin, A. G., Yahnina, T. A., Frey, H. U., Bösinger, T., Manninen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue A12
container_start_page
container_title Journal of Geophysical Research. A. Space Physics
container_volume 114
creator Yahnin, A. G.
Yahnina, T. A.
Frey, H. U.
Bösinger, T.
Manninen, J.
description Geomagnetic pulsations in the Pc1 frequency range are believed to be an indicator of electromagnetic ion cyclotron waves arriving from the equatorial magnetosphere, where the waves are generated because of a cyclotron instability of the anisotropic distribution of ring current ions. Proton precipitation produced by the cyclotron instability can be responsible for proton aurora. Indeed, the relationship between some types of proton aurora (proton spots and proton flashes) and pulsations in the Pc1 range (quasi‐monochromatic Pc1 and Pc1 bursts) has already been found. The aim of this study is to find the proton aurora pattern, which relates to the kind of geomagnetic pulsations in the Pc1 range called intervals of pulsation of diminishing periods (IPDP). This is done on the basis of 2 year observations of geomagnetic pulsations at the Finnish meridional network of search coil magnetometers and proton aurora from the IMAGE spacecraft. We found that during IPDP the proton arcs appear equatorward of the proton oval at the meridian of the ground magnetometers. The maximum intensity of the pulsations is observed at the ground station, which is closest to the proton arc. The proton arcs tend to appear at lower latitudes at later magnetic local times (MLTs). This agrees with the facts that the IPDP occurrence exhibits a similar behavior and that the IPDP end frequency tends to increase with increasing MLT. In addition, data from geosynchronous spacecraft showed that IPDP occur when clouds of energy‐dispersed energetic protons pass through the meridian of the ground magnetometers. The spatial‐temporal correlation of IPDP with proton aurora arcs confirms the expectation that the proton arcs, like the proton spots and flashes, are the ionospheric image of the region where the ion cyclotron instability develops in the equatorial magnetosphere. In the case of IPDP the instability develops when drifting proton clouds resulting from particle injections in the night sector contact the plasmaspheric plume onto which the proton arcs map.
doi_str_mv 10.1029/2009JA014670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36403155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315307901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5103-e31e40c95241c6ba1a3d06ea395f780162bedd2bcf8394e6dfc441f188e135cd3</originalsourceid><addsrcrecordid>eNqF0M2O0zAQAGALgUS12xsPEHHgRGDGf0mOpWIDVQUVFHG03GQCLmkc7GShb7_pBiHEAXwZefTNjGYYe4LwAoEXLzlAsVkBSp3BA7bgqHTKOfCHbDEl8xQ4zx6zZYxHmJ5UWgIuWLkLfvBdYsfgg00CtXagOhl84rqBwq1tY-KbpB_baAfnu_tf7U6uc_Gr674kPQXn63jNHjWTpeWveMU-3bzer9-k2_fl2_Vqm1YKQaQkkCRUheISK32waEUNmqwoVJPlgJofqK75oWpyUUjSdVNJiQ3mOaFQVS2u2LO5bx_895HiYE4uVtS2tiM_RiOmtQQq9V_IUcgsL_IJPv0LHv0YumkJk2uEgispJvR8RlXwMQZqTB_cyYazQTCX85s_zz9xMfMfrqXzP63ZlB9WHLC4DEnnKhcH-vm7yoZvRmciU-bzu9K82iLP9uqj2Yk7MsCUGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861092543</pqid></control><display><type>article</type><title>Proton aurora related to intervals of pulsations of diminishing periods</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Yahnin, A. G. ; Yahnina, T. A. ; Frey, H. U. ; Bösinger, T. ; Manninen, J.</creator><creatorcontrib>Yahnin, A. G. ; Yahnina, T. A. ; Frey, H. U. ; Bösinger, T. ; Manninen, J.</creatorcontrib><description>Geomagnetic pulsations in the Pc1 frequency range are believed to be an indicator of electromagnetic ion cyclotron waves arriving from the equatorial magnetosphere, where the waves are generated because of a cyclotron instability of the anisotropic distribution of ring current ions. Proton precipitation produced by the cyclotron instability can be responsible for proton aurora. Indeed, the relationship between some types of proton aurora (proton spots and proton flashes) and pulsations in the Pc1 range (quasi‐monochromatic Pc1 and Pc1 bursts) has already been found. The aim of this study is to find the proton aurora pattern, which relates to the kind of geomagnetic pulsations in the Pc1 range called intervals of pulsation of diminishing periods (IPDP). This is done on the basis of 2 year observations of geomagnetic pulsations at the Finnish meridional network of search coil magnetometers and proton aurora from the IMAGE spacecraft. We found that during IPDP the proton arcs appear equatorward of the proton oval at the meridian of the ground magnetometers. The maximum intensity of the pulsations is observed at the ground station, which is closest to the proton arc. The proton arcs tend to appear at lower latitudes at later magnetic local times (MLTs). This agrees with the facts that the IPDP occurrence exhibits a similar behavior and that the IPDP end frequency tends to increase with increasing MLT. In addition, data from geosynchronous spacecraft showed that IPDP occur when clouds of energy‐dispersed energetic protons pass through the meridian of the ground magnetometers. The spatial‐temporal correlation of IPDP with proton aurora arcs confirms the expectation that the proton arcs, like the proton spots and flashes, are the ionospheric image of the region where the ion cyclotron instability develops in the equatorial magnetosphere. In the case of IPDP the instability develops when drifting proton clouds resulting from particle injections in the night sector contact the plasmaspheric plume onto which the proton arcs map.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2009JA014670</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric sciences ; EMIC waves ; Magnetism ; Magnetometers ; proton aurora ; Spacecraft</subject><ispartof>Journal of Geophysical Research. A. Space Physics, 2009-12, Vol.114 (A12), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5103-e31e40c95241c6ba1a3d06ea395f780162bedd2bcf8394e6dfc441f188e135cd3</citedby><cites>FETCH-LOGICAL-c5103-e31e40c95241c6ba1a3d06ea395f780162bedd2bcf8394e6dfc441f188e135cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JA014670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JA014670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids></links><search><creatorcontrib>Yahnin, A. G.</creatorcontrib><creatorcontrib>Yahnina, T. A.</creatorcontrib><creatorcontrib>Frey, H. U.</creatorcontrib><creatorcontrib>Bösinger, T.</creatorcontrib><creatorcontrib>Manninen, J.</creatorcontrib><title>Proton aurora related to intervals of pulsations of diminishing periods</title><title>Journal of Geophysical Research. A. Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>Geomagnetic pulsations in the Pc1 frequency range are believed to be an indicator of electromagnetic ion cyclotron waves arriving from the equatorial magnetosphere, where the waves are generated because of a cyclotron instability of the anisotropic distribution of ring current ions. Proton precipitation produced by the cyclotron instability can be responsible for proton aurora. Indeed, the relationship between some types of proton aurora (proton spots and proton flashes) and pulsations in the Pc1 range (quasi‐monochromatic Pc1 and Pc1 bursts) has already been found. The aim of this study is to find the proton aurora pattern, which relates to the kind of geomagnetic pulsations in the Pc1 range called intervals of pulsation of diminishing periods (IPDP). This is done on the basis of 2 year observations of geomagnetic pulsations at the Finnish meridional network of search coil magnetometers and proton aurora from the IMAGE spacecraft. We found that during IPDP the proton arcs appear equatorward of the proton oval at the meridian of the ground magnetometers. The maximum intensity of the pulsations is observed at the ground station, which is closest to the proton arc. The proton arcs tend to appear at lower latitudes at later magnetic local times (MLTs). This agrees with the facts that the IPDP occurrence exhibits a similar behavior and that the IPDP end frequency tends to increase with increasing MLT. In addition, data from geosynchronous spacecraft showed that IPDP occur when clouds of energy‐dispersed energetic protons pass through the meridian of the ground magnetometers. The spatial‐temporal correlation of IPDP with proton aurora arcs confirms the expectation that the proton arcs, like the proton spots and flashes, are the ionospheric image of the region where the ion cyclotron instability develops in the equatorial magnetosphere. In the case of IPDP the instability develops when drifting proton clouds resulting from particle injections in the night sector contact the plasmaspheric plume onto which the proton arcs map.</description><subject>Atmospheric sciences</subject><subject>EMIC waves</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>proton aurora</subject><subject>Spacecraft</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M2O0zAQAGALgUS12xsPEHHgRGDGf0mOpWIDVQUVFHG03GQCLmkc7GShb7_pBiHEAXwZefTNjGYYe4LwAoEXLzlAsVkBSp3BA7bgqHTKOfCHbDEl8xQ4zx6zZYxHmJ5UWgIuWLkLfvBdYsfgg00CtXagOhl84rqBwq1tY-KbpB_baAfnu_tf7U6uc_Gr674kPQXn63jNHjWTpeWveMU-3bzer9-k2_fl2_Vqm1YKQaQkkCRUheISK32waEUNmqwoVJPlgJofqK75oWpyUUjSdVNJiQ3mOaFQVS2u2LO5bx_895HiYE4uVtS2tiM_RiOmtQQq9V_IUcgsL_IJPv0LHv0YumkJk2uEgispJvR8RlXwMQZqTB_cyYazQTCX85s_zz9xMfMfrqXzP63ZlB9WHLC4DEnnKhcH-vm7yoZvRmciU-bzu9K82iLP9uqj2Yk7MsCUGA</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Yahnin, A. G.</creator><creator>Yahnina, T. A.</creator><creator>Frey, H. U.</creator><creator>Bösinger, T.</creator><creator>Manninen, J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200912</creationdate><title>Proton aurora related to intervals of pulsations of diminishing periods</title><author>Yahnin, A. G. ; Yahnina, T. A. ; Frey, H. U. ; Bösinger, T. ; Manninen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5103-e31e40c95241c6ba1a3d06ea395f780162bedd2bcf8394e6dfc441f188e135cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmospheric sciences</topic><topic>EMIC waves</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>proton aurora</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yahnin, A. G.</creatorcontrib><creatorcontrib>Yahnina, T. A.</creatorcontrib><creatorcontrib>Frey, H. U.</creatorcontrib><creatorcontrib>Bösinger, T.</creatorcontrib><creatorcontrib>Manninen, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. A. Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yahnin, A. G.</au><au>Yahnina, T. A.</au><au>Frey, H. U.</au><au>Bösinger, T.</au><au>Manninen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton aurora related to intervals of pulsations of diminishing periods</atitle><jtitle>Journal of Geophysical Research. A. Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-12</date><risdate>2009</risdate><volume>114</volume><issue>A12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>Geomagnetic pulsations in the Pc1 frequency range are believed to be an indicator of electromagnetic ion cyclotron waves arriving from the equatorial magnetosphere, where the waves are generated because of a cyclotron instability of the anisotropic distribution of ring current ions. Proton precipitation produced by the cyclotron instability can be responsible for proton aurora. Indeed, the relationship between some types of proton aurora (proton spots and proton flashes) and pulsations in the Pc1 range (quasi‐monochromatic Pc1 and Pc1 bursts) has already been found. The aim of this study is to find the proton aurora pattern, which relates to the kind of geomagnetic pulsations in the Pc1 range called intervals of pulsation of diminishing periods (IPDP). This is done on the basis of 2 year observations of geomagnetic pulsations at the Finnish meridional network of search coil magnetometers and proton aurora from the IMAGE spacecraft. We found that during IPDP the proton arcs appear equatorward of the proton oval at the meridian of the ground magnetometers. The maximum intensity of the pulsations is observed at the ground station, which is closest to the proton arc. The proton arcs tend to appear at lower latitudes at later magnetic local times (MLTs). This agrees with the facts that the IPDP occurrence exhibits a similar behavior and that the IPDP end frequency tends to increase with increasing MLT. In addition, data from geosynchronous spacecraft showed that IPDP occur when clouds of energy‐dispersed energetic protons pass through the meridian of the ground magnetometers. The spatial‐temporal correlation of IPDP with proton aurora arcs confirms the expectation that the proton arcs, like the proton spots and flashes, are the ionospheric image of the region where the ion cyclotron instability develops in the equatorial magnetosphere. In the case of IPDP the instability develops when drifting proton clouds resulting from particle injections in the night sector contact the plasmaspheric plume onto which the proton arcs map.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JA014670</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. A. Space Physics, 2009-12, Vol.114 (A12), p.n/a
issn 0148-0227
2169-9380
2156-2202
2169-9402
language eng
recordid cdi_proquest_miscellaneous_36403155
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Atmospheric sciences
EMIC waves
Magnetism
Magnetometers
proton aurora
Spacecraft
title Proton aurora related to intervals of pulsations of diminishing periods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20aurora%20related%20to%20intervals%20of%20pulsations%20of%20diminishing%20periods&rft.jtitle=Journal%20of%20Geophysical%20Research.%20A.%20Space%20Physics&rft.au=Yahnin,%20A.%20G.&rft.date=2009-12&rft.volume=114&rft.issue=A12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JA014670&rft_dat=%3Cproquest_cross%3E2315307901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861092543&rft_id=info:pmid/&rfr_iscdi=true