Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems

In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2010-05, Vol.123 (1), p.33-60
Hauptverfasser: Cánovas, M. J., Gómez-Senent, F. J., Parra, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 33
container_title Mathematical programming
container_volume 123
creator Cánovas, M. J.
Gómez-Senent, F. J.
Parra, J.
description In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.
doi_str_mv 10.1007/s10107-009-0312-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36396483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36396483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</originalsourceid><addsrcrecordid>eNp1kE1LJDEURcOgYKvzA9wVA7oyYz6qUslSRMeBBjfOOqRTL02kKtXmVYn9703T4ojgKvBy7uVyCDnj7DdnrL1CzjhrKWOGMskFbX-QBa-lorWq1QFZMCYa2ijOjsgx4hNjjEutFyQuYwKXqwzruXc5TtvLCp7nmD8fXOqqmCbICH6KY6oGt9nEtMYqjLnyY3qB1wphiDSmEFOcoOClxfUlXuEWJxjwlBwG1yP8fH9PyL-728ebe7p8-PP35npJvWzVREWrw8p5I1YGoKu55qEB4xrddaGTUvoglIKWG9k1jQEnebPqukaZNphVzZU8IRf73k0en2fAyQ4RPfS9SzDOaKWSRtVaFvDXF_BpnHMq26yQQtdaaFYgvod8HhEzBLvJcXB5azmzO_N2b94W83Zn3rYlc_5e7NC7PmSXfMSPoBC1EMbsloo9h-UrrSH_H_B9-RsLE5Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232848280</pqid></control><display><type>article</type><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</creator><creatorcontrib>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</creatorcontrib><description>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-009-0312-7</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Calculus of variations and optimal control ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Exact sciences and technology ; Full Length Paper ; Inequality ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neighborhoods ; Numerical Analysis ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2010-05, Vol.123 (1), p.33-60</ispartof><rights>Springer and Mathematical Programming Society 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer and Mathematical Programming Society 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</citedby><cites>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-009-0312-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-009-0312-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22422996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cánovas, M. J.</creatorcontrib><creatorcontrib>Gómez-Senent, F. J.</creatorcontrib><creatorcontrib>Parra, J.</creatorcontrib><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</description><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Exact sciences and technology</subject><subject>Full Length Paper</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neighborhoods</subject><subject>Numerical Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LJDEURcOgYKvzA9wVA7oyYz6qUslSRMeBBjfOOqRTL02kKtXmVYn9703T4ojgKvBy7uVyCDnj7DdnrL1CzjhrKWOGMskFbX-QBa-lorWq1QFZMCYa2ijOjsgx4hNjjEutFyQuYwKXqwzruXc5TtvLCp7nmD8fXOqqmCbICH6KY6oGt9nEtMYqjLnyY3qB1wphiDSmEFOcoOClxfUlXuEWJxjwlBwG1yP8fH9PyL-728ebe7p8-PP35npJvWzVREWrw8p5I1YGoKu55qEB4xrddaGTUvoglIKWG9k1jQEnebPqukaZNphVzZU8IRf73k0en2fAyQ4RPfS9SzDOaKWSRtVaFvDXF_BpnHMq26yQQtdaaFYgvod8HhEzBLvJcXB5azmzO_N2b94W83Zn3rYlc_5e7NC7PmSXfMSPoBC1EMbsloo9h-UrrSH_H_B9-RsLE5Vg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Cánovas, M. J.</creator><creator>Gómez-Senent, F. J.</creator><creator>Parra, J.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100501</creationdate><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><author>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Exact sciences and technology</topic><topic>Full Length Paper</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neighborhoods</topic><topic>Numerical Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cánovas, M. J.</creatorcontrib><creatorcontrib>Gómez-Senent, F. J.</creatorcontrib><creatorcontrib>Parra, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cánovas, M. J.</au><au>Gómez-Senent, F. J.</au><au>Parra, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>123</volume><issue>1</issue><spage>33</spage><epage>60</epage><pages>33-60</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-009-0312-7</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2010-05, Vol.123 (1), p.33-60
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_36396483
source SpringerLink; Business Source Complete
subjects Applied sciences
Calculus of variations and optimal control
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Exact sciences and technology
Full Length Paper
Inequality
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Neighborhoods
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Sciences and techniques of general use
Studies
Theoretical
title Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20regularity,%20equirregularity,%20and%20intersection%20mappings%20for%20convex%20semi-infinite%20inequality%20systems&rft.jtitle=Mathematical%20programming&rft.au=C%C3%A1novas,%20M.%20J.&rft.date=2010-05-01&rft.volume=123&rft.issue=1&rft.spage=33&rft.epage=60&rft.pages=33-60&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-009-0312-7&rft_dat=%3Cproquest_cross%3E36396483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232848280&rft_id=info:pmid/&rfr_iscdi=true