Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems
In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metr...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2010-05, Vol.123 (1), p.33-60 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Mathematical programming |
container_volume | 123 |
creator | Cánovas, M. J. Gómez-Senent, F. J. Parra, J. |
description | In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities. |
doi_str_mv | 10.1007/s10107-009-0312-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36396483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36396483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</originalsourceid><addsrcrecordid>eNp1kE1LJDEURcOgYKvzA9wVA7oyYz6qUslSRMeBBjfOOqRTL02kKtXmVYn9703T4ojgKvBy7uVyCDnj7DdnrL1CzjhrKWOGMskFbX-QBa-lorWq1QFZMCYa2ijOjsgx4hNjjEutFyQuYwKXqwzruXc5TtvLCp7nmD8fXOqqmCbICH6KY6oGt9nEtMYqjLnyY3qB1wphiDSmEFOcoOClxfUlXuEWJxjwlBwG1yP8fH9PyL-728ebe7p8-PP35npJvWzVREWrw8p5I1YGoKu55qEB4xrddaGTUvoglIKWG9k1jQEnebPqukaZNphVzZU8IRf73k0en2fAyQ4RPfS9SzDOaKWSRtVaFvDXF_BpnHMq26yQQtdaaFYgvod8HhEzBLvJcXB5azmzO_N2b94W83Zn3rYlc_5e7NC7PmSXfMSPoBC1EMbsloo9h-UrrSH_H_B9-RsLE5Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232848280</pqid></control><display><type>article</type><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</creator><creatorcontrib>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</creatorcontrib><description>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-009-0312-7</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Calculus of variations and optimal control ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Exact sciences and technology ; Full Length Paper ; Inequality ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neighborhoods ; Numerical Analysis ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2010-05, Vol.123 (1), p.33-60</ispartof><rights>Springer and Mathematical Programming Society 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer and Mathematical Programming Society 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</citedby><cites>FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-009-0312-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-009-0312-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22422996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cánovas, M. J.</creatorcontrib><creatorcontrib>Gómez-Senent, F. J.</creatorcontrib><creatorcontrib>Parra, J.</creatorcontrib><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</description><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Exact sciences and technology</subject><subject>Full Length Paper</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neighborhoods</subject><subject>Numerical Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LJDEURcOgYKvzA9wVA7oyYz6qUslSRMeBBjfOOqRTL02kKtXmVYn9703T4ojgKvBy7uVyCDnj7DdnrL1CzjhrKWOGMskFbX-QBa-lorWq1QFZMCYa2ijOjsgx4hNjjEutFyQuYwKXqwzruXc5TtvLCp7nmD8fXOqqmCbICH6KY6oGt9nEtMYqjLnyY3qB1wphiDSmEFOcoOClxfUlXuEWJxjwlBwG1yP8fH9PyL-728ebe7p8-PP35npJvWzVREWrw8p5I1YGoKu55qEB4xrddaGTUvoglIKWG9k1jQEnebPqukaZNphVzZU8IRf73k0en2fAyQ4RPfS9SzDOaKWSRtVaFvDXF_BpnHMq26yQQtdaaFYgvod8HhEzBLvJcXB5azmzO_N2b94W83Zn3rYlc_5e7NC7PmSXfMSPoBC1EMbsloo9h-UrrSH_H_B9-RsLE5Vg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Cánovas, M. J.</creator><creator>Gómez-Senent, F. J.</creator><creator>Parra, J.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100501</creationdate><title>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</title><author>Cánovas, M. J. ; Gómez-Senent, F. J. ; Parra, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-278fbac92b9eed4181f5e9a58ddfd333cf266e7193d559ea315bdd5697f9b4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Exact sciences and technology</topic><topic>Full Length Paper</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neighborhoods</topic><topic>Numerical Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cánovas, M. J.</creatorcontrib><creatorcontrib>Gómez-Senent, F. J.</creatorcontrib><creatorcontrib>Parra, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cánovas, M. J.</au><au>Gómez-Senent, F. J.</au><au>Parra, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>123</volume><issue>1</issue><spage>33</spage><epage>60</epage><pages>33-60</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>In this paper, we introduce the concepts of linear regularity and equirregularity for an arbitary family of set-valued mappings between (extended) metric spaces. The concept of linear regularity is inspired in the same property for a family of sets. Then we analyze the relationship between the (metric) regularity moduli of the mappings in the family and the modulus of the associated intersection mapping. We are particularly concerned with the solution set of a system of infinitely many convex inequalities. Our framework allows for right hand side perturbations as well as for linear perturbations of the left hand side of all the inequalities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-009-0312-7</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2010-05, Vol.123 (1), p.33-60 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_36396483 |
source | SpringerLink; Business Source Complete |
subjects | Applied sciences Calculus of variations and optimal control Calculus of Variations and Optimal Control Optimization Combinatorics Exact sciences and technology Full Length Paper Inequality Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Neighborhoods Numerical Analysis Operational research and scientific management Operational research. Management science Sciences and techniques of general use Studies Theoretical |
title | Linear regularity, equirregularity, and intersection mappings for convex semi-infinite inequality systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20regularity,%20equirregularity,%20and%20intersection%20mappings%20for%20convex%20semi-infinite%20inequality%20systems&rft.jtitle=Mathematical%20programming&rft.au=C%C3%A1novas,%20M.%20J.&rft.date=2010-05-01&rft.volume=123&rft.issue=1&rft.spage=33&rft.epage=60&rft.pages=33-60&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-009-0312-7&rft_dat=%3Cproquest_cross%3E36396483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232848280&rft_id=info:pmid/&rfr_iscdi=true |