Interface error analysis for numerical wave propagation
The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignm...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2009-09, Vol.13 (3), p.363-371 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | Computational geosciences |
container_volume | 13 |
creator | Symes, William W. Vdovina, Tetyana |
description | The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignment between numerical grids and material interfaces. We provide an explicit estimate of the interface misalignment error for the second order in time and space staggered finite-difference scheme applied to the acoustic wave equation. Our analysis, confirmed by numerical experiments, demonstrates that the interface error results in a first-order time shift proportional to the distance between the interface and computational grids. A 2D experiment shows that the interface error cannot be suppressed by higher-order methods and indicates that our 1D analysis gives a good prediction about the behavior of the numerical solution in higher dimensions. |
doi_str_mv | 10.1007/s10596-008-9124-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36395946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36395946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-f000005503f1723bdab6f988ba438e778c25e9ebbe283edd96d1a9222ef75b503</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Fg7doPpomOcrix8KCFz2HaTtZuvRjTVpl_71ZKgiCc5kZeN53mJeQa87uOGP6PnKmbEEZM9RykVNzQhZcaUl5bu1pmnPBaEL0ObmIcccYs1ryBdHrfsTgocIMQxhCBj20h9jEzKelnzoMTQVt9gWfmO3DsIctjM3QX5IzD23Eq5--JO9Pj2-rF7p5fV6vHjYUcm1G6tmxlGLScy1kWUNZeGtMCbk0qLWphEKLZYnCSKxrW9QcrBACvVZlki3J7eybbn9MGEfXNbHCtoUehyk6WUirbF4k8OYPuBumkJ6JTjBlCs1lniA-Q1UYYgzo3T40HYSD48wdc3Rzji7l6I45OpM0YtbExPZbDL_G_4u-AaeedMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205867134</pqid></control><display><type>article</type><title>Interface error analysis for numerical wave propagation</title><source>SpringerNature Journals</source><creator>Symes, William W. ; Vdovina, Tetyana</creator><creatorcontrib>Symes, William W. ; Vdovina, Tetyana</creatorcontrib><description>The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignment between numerical grids and material interfaces. We provide an explicit estimate of the interface misalignment error for the second order in time and space staggered finite-difference scheme applied to the acoustic wave equation. Our analysis, confirmed by numerical experiments, demonstrates that the interface error results in a first-order time shift proportional to the distance between the interface and computational grids. A 2D experiment shows that the interface error cannot be suppressed by higher-order methods and indicates that our 1D analysis gives a good prediction about the behavior of the numerical solution in higher dimensions.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-008-9124-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Error analysis ; Geophysics ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Interfaces ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Original Paper ; Simulation ; Soil Science & Conservation ; Wave propagation</subject><ispartof>Computational geosciences, 2009-09, Vol.13 (3), p.363-371</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-f000005503f1723bdab6f988ba438e778c25e9ebbe283edd96d1a9222ef75b503</citedby><cites>FETCH-LOGICAL-a478t-f000005503f1723bdab6f988ba438e778c25e9ebbe283edd96d1a9222ef75b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-008-9124-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-008-9124-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Symes, William W.</creatorcontrib><creatorcontrib>Vdovina, Tetyana</creatorcontrib><title>Interface error analysis for numerical wave propagation</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignment between numerical grids and material interfaces. We provide an explicit estimate of the interface misalignment error for the second order in time and space staggered finite-difference scheme applied to the acoustic wave equation. Our analysis, confirmed by numerical experiments, demonstrates that the interface error results in a first-order time shift proportional to the distance between the interface and computational grids. A 2D experiment shows that the interface error cannot be suppressed by higher-order methods and indicates that our 1D analysis gives a good prediction about the behavior of the numerical solution in higher dimensions.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Error analysis</subject><subject>Geophysics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Interfaces</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Original Paper</subject><subject>Simulation</subject><subject>Soil Science & Conservation</subject><subject>Wave propagation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Fg7doPpomOcrix8KCFz2HaTtZuvRjTVpl_71ZKgiCc5kZeN53mJeQa87uOGP6PnKmbEEZM9RykVNzQhZcaUl5bu1pmnPBaEL0ObmIcccYs1ryBdHrfsTgocIMQxhCBj20h9jEzKelnzoMTQVt9gWfmO3DsIctjM3QX5IzD23Eq5--JO9Pj2-rF7p5fV6vHjYUcm1G6tmxlGLScy1kWUNZeGtMCbk0qLWphEKLZYnCSKxrW9QcrBACvVZlki3J7eybbn9MGEfXNbHCtoUehyk6WUirbF4k8OYPuBumkJ6JTjBlCs1lniA-Q1UYYgzo3T40HYSD48wdc3Rzji7l6I45OpM0YtbExPZbDL_G_4u-AaeedMU</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Symes, William W.</creator><creator>Vdovina, Tetyana</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>Interface error analysis for numerical wave propagation</title><author>Symes, William W. ; Vdovina, Tetyana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-f000005503f1723bdab6f988ba438e778c25e9ebbe283edd96d1a9222ef75b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Error analysis</topic><topic>Geophysics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Interfaces</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Original Paper</topic><topic>Simulation</topic><topic>Soil Science & Conservation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Symes, William W.</creatorcontrib><creatorcontrib>Vdovina, Tetyana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Symes, William W.</au><au>Vdovina, Tetyana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface error analysis for numerical wave propagation</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>13</volume><issue>3</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>The numerical error associated with finite-difference simulation of wave propagation in discontinuous media consists of two components. The first component is a higher-order error that leads to grid dispersion; it can be controlled by higher-order methods. The second component results from misalignment between numerical grids and material interfaces. We provide an explicit estimate of the interface misalignment error for the second order in time and space staggered finite-difference scheme applied to the acoustic wave equation. Our analysis, confirmed by numerical experiments, demonstrates that the interface error results in a first-order time shift proportional to the distance between the interface and computational grids. A 2D experiment shows that the interface error cannot be suppressed by higher-order methods and indicates that our 1D analysis gives a good prediction about the behavior of the numerical solution in higher dimensions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-008-9124-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2009-09, Vol.13 (3), p.363-371 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_36395946 |
source | SpringerNature Journals |
subjects | Earth and Environmental Science Earth Sciences Error analysis Geophysics Geotechnical Engineering & Applied Earth Sciences Hydrogeology Interfaces Mathematical Modeling and Industrial Mathematics Mathematics Original Paper Simulation Soil Science & Conservation Wave propagation |
title | Interface error analysis for numerical wave propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20error%20analysis%20for%20numerical%20wave%20propagation&rft.jtitle=Computational%20geosciences&rft.au=Symes,%20William%20W.&rft.date=2009-09-01&rft.volume=13&rft.issue=3&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-008-9124-8&rft_dat=%3Cproquest_cross%3E36395946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205867134&rft_id=info:pmid/&rfr_iscdi=true |