Heat equation with singular potential and singular data

Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to ε are used for solving the Cauchy problem (∂t − Δ)U + VU = f(t, U), U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0 are singular generalized functions while f satisfies a Lipschit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-08, Vol.135 (4), p.863-886
Hauptverfasser: Nedeljkov, M., Pilipović, S., Rajter-Ćirić, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 4
container_start_page 863
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 135
creator Nedeljkov, M.
Pilipović, S.
Rajter-Ćirić, D.
description Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to ε are used for solving the Cauchy problem (∂t − Δ)U + VU = f(t, U), U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0 are singular generalized functions while f satisfies a Lipschitz-type condition. The existence of distribution solutions is proved in appropriate cases by the means of white noise calculus as well as classical energy estimates.
doi_str_mv 10.1017/S0308210505000442
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36394857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210505000442</cupid><sourcerecordid>36394857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-6ada2f498a7dccc2795bfa803f700bf9f3379edaa38dbe403d1a7c761198ca543</originalsourceid><addsrcrecordid>eNp9UM9LwzAUDqLgnP4B3nryVk2atK85ytRNGIpMz-G1SWdm184kRf3vzdjQgyDv8OD78T7eR8g5o5eMMrhaUE7LjNE8DqVCZAdkxATwFFgmDsloS6db_piceL-KmqLMYURgZjAk5n3AYPsu-bDhNfG2Ww4tumTTB9MFi22Cnf6FNQY8JUcNtt6c7feYvNzdPk9m6fxxej-5nqd1BjykBWrMGiFLBF3XEZN51WBJeQOUVo1sOAdpNCIvdWUE5Zoh1FAwJssac8HH5GJ3d-P698H4oNbW16ZtsTP94BUvuBTxkyhkO2Hteu-dadTG2TW6L8Wo2lak_lQUPenOY30wnz8GdG-qAA65KqZPik9u5ALgQU2jnu8zcF05q5dGrfrBdbGAf1K-AdAAdwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36394857</pqid></control><display><type>article</type><title>Heat equation with singular potential and singular data</title><source>Cambridge University Press Journals Complete</source><creator>Nedeljkov, M. ; Pilipović, S. ; Rajter-Ćirić, D.</creator><creatorcontrib>Nedeljkov, M. ; Pilipović, S. ; Rajter-Ćirić, D.</creatorcontrib><description>Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to ε are used for solving the Cauchy problem (∂t − Δ)U + VU = f(t, U), U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0 are singular generalized functions while f satisfies a Lipschitz-type condition. The existence of distribution solutions is proved in appropriate cases by the means of white noise calculus as well as classical energy estimates.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210505000442</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-08, Vol.135 (4), p.863-886</ispartof><rights>Copyright © Royal Society of Edinburgh 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-6ada2f498a7dccc2795bfa803f700bf9f3379edaa38dbe403d1a7c761198ca543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210505000442/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Nedeljkov, M.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><creatorcontrib>Rajter-Ćirić, D.</creatorcontrib><title>Heat equation with singular potential and singular data</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to ε are used for solving the Cauchy problem (∂t − Δ)U + VU = f(t, U), U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0 are singular generalized functions while f satisfies a Lipschitz-type condition. The existence of distribution solutions is proved in appropriate cases by the means of white noise calculus as well as classical energy estimates.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UM9LwzAUDqLgnP4B3nryVk2atK85ytRNGIpMz-G1SWdm184kRf3vzdjQgyDv8OD78T7eR8g5o5eMMrhaUE7LjNE8DqVCZAdkxATwFFgmDsloS6db_piceL-KmqLMYURgZjAk5n3AYPsu-bDhNfG2Ww4tumTTB9MFi22Cnf6FNQY8JUcNtt6c7feYvNzdPk9m6fxxej-5nqd1BjykBWrMGiFLBF3XEZN51WBJeQOUVo1sOAdpNCIvdWUE5Zoh1FAwJssac8HH5GJ3d-P698H4oNbW16ZtsTP94BUvuBTxkyhkO2Hteu-dadTG2TW6L8Wo2lak_lQUPenOY30wnz8GdG-qAA65KqZPik9u5ALgQU2jnu8zcF05q5dGrfrBdbGAf1K-AdAAdwg</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Nedeljkov, M.</creator><creator>Pilipović, S.</creator><creator>Rajter-Ćirić, D.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050801</creationdate><title>Heat equation with singular potential and singular data</title><author>Nedeljkov, M. ; Pilipović, S. ; Rajter-Ćirić, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-6ada2f498a7dccc2795bfa803f700bf9f3379edaa38dbe403d1a7c761198ca543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedeljkov, M.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><creatorcontrib>Rajter-Ćirić, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedeljkov, M.</au><au>Pilipović, S.</au><au>Rajter-Ćirić, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat equation with singular potential and singular data</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>135</volume><issue>4</issue><spage>863</spage><epage>886</epage><pages>863-886</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to ε are used for solving the Cauchy problem (∂t − Δ)U + VU = f(t, U), U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0 are singular generalized functions while f satisfies a Lipschitz-type condition. The existence of distribution solutions is proved in appropriate cases by the means of white noise calculus as well as classical energy estimates.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210505000442</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-08, Vol.135 (4), p.863-886
issn 0308-2105
1473-7124
language eng
recordid cdi_proquest_miscellaneous_36394857
source Cambridge University Press Journals Complete
title Heat equation with singular potential and singular data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20equation%20with%20singular%20potential%20and%20singular%20data&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Nedeljkov,%20M.&rft.date=2005-08-01&rft.volume=135&rft.issue=4&rft.spage=863&rft.epage=886&rft.pages=863-886&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210505000442&rft_dat=%3Cproquest_cross%3E36394857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36394857&rft_id=info:pmid/&rft_cupid=10_1017_S0308210505000442&rfr_iscdi=true