On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces
We consider the eigenvalue problem in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no 2 condition is imposed.
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2002-08, Vol.132 (4), p.891-909 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 4 |
container_start_page | 891 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 132 |
creator | Gossez, J.-P. Manasevich, R |
description | We consider the eigenvalue problem in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no 2 condition is imposed. |
doi_str_mv | 10.1017/S0308210502000434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36393778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36393778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1218-286099cba643ace0d917ffc1d89a03e7f97e71462ec98ce773e48e2058597ac73</originalsourceid><addsrcrecordid>eNplkL1OAzEQhC0EEiHwAHSu6A52z75bW6JBEX9SpBSB-uQ4e-iQ4ws2iQQV78Ab8iRcFDqqLeabmdUIcY5wiYB0NQcFpkSooAQArfSBGKEmVRCW-lCMdnKx04_FSc6vA1Obikbiehalk7GPoYvskuTuhePWhQ3LdeoXgVeyi3KWQuc_f76-5_2iD7yVee0851Nx1LqQ-ezvjsXz3e3T5KGYzu4fJzfTwmOJQ62pwVq_cLVWgw2WFqltPS6NdaCYWktMqOuSvTWeiRRrwyVUprLkPKmxuNjnDi-9bTi_N6suew7BRe43uVG1sorIDCDuQZ_6nBO3zTp1K5c-GoRmt1Pzbyf1CwbEWoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36393778</pqid></control><display><type>article</type><title>On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Gossez, J.-P. ; Manasevich, R</creator><creatorcontrib>Gossez, J.-P. ; Manasevich, R</creatorcontrib><description>We consider the eigenvalue problem in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no 2 condition is imposed.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210502000434</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2002-08, Vol.132 (4), p.891-909</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1218-286099cba643ace0d917ffc1d89a03e7f97e71462ec98ce773e48e2058597ac73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gossez, J.-P.</creatorcontrib><creatorcontrib>Manasevich, R</creatorcontrib><title>On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>We consider the eigenvalue problem in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no 2 condition is imposed.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNplkL1OAzEQhC0EEiHwAHSu6A52z75bW6JBEX9SpBSB-uQ4e-iQ4ws2iQQV78Ab8iRcFDqqLeabmdUIcY5wiYB0NQcFpkSooAQArfSBGKEmVRCW-lCMdnKx04_FSc6vA1Obikbiehalk7GPoYvskuTuhePWhQ3LdeoXgVeyi3KWQuc_f76-5_2iD7yVee0851Nx1LqQ-ezvjsXz3e3T5KGYzu4fJzfTwmOJQ62pwVq_cLVWgw2WFqltPS6NdaCYWktMqOuSvTWeiRRrwyVUprLkPKmxuNjnDi-9bTi_N6suew7BRe43uVG1sorIDCDuQZ_6nBO3zTp1K5c-GoRmt1Pzbyf1CwbEWoY</recordid><startdate>200208</startdate><enddate>200208</enddate><creator>Gossez, J.-P.</creator><creator>Manasevich, R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200208</creationdate><title>On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces</title><author>Gossez, J.-P. ; Manasevich, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1218-286099cba643ace0d917ffc1d89a03e7f97e71462ec98ce773e48e2058597ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gossez, J.-P.</creatorcontrib><creatorcontrib>Manasevich, R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gossez, J.-P.</au><au>Manasevich, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2002-08</date><risdate>2002</risdate><volume>132</volume><issue>4</issue><spage>891</spage><epage>909</epage><pages>891-909</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We consider the eigenvalue problem in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no 2 condition is imposed.</abstract><doi>10.1017/S0308210502000434</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2002-08, Vol.132 (4), p.891-909 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_miscellaneous_36393778 |
source | Cambridge Journals - Connect here FIRST to enable access |
title | On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20nonlinear%20eigenvalue%20problem%20in%20Orlicz%E2%80%93Sobolev%20spaces&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Gossez,%20J.-P.&rft.date=2002-08&rft.volume=132&rft.issue=4&rft.spage=891&rft.epage=909&rft.pages=891-909&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210502000434&rft_dat=%3Cproquest_cross%3E36393778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36393778&rft_id=info:pmid/&rfr_iscdi=true |