Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment

Mineralogical changes in the bentonite-based barrier of the laboratory Mock-Up-CZ experiment were evaluated by X-ray diffraction. The material of the barrier is a mixture of non-activated bentonite (containing Fe-montmorillonite with Ca 2+ exchangeable cation) (85 vol.%), quartz sand (10 vol.%) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied clay science 2010, Vol.47 (1), p.10-15
Hauptverfasser: Kolaříková, Irena, Švandová, Jana, Přikryl, Richard, Vinšová, Hana, Jedináková-Křížová, Věra, Zeman, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 10
container_title Applied clay science
container_volume 47
creator Kolaříková, Irena
Švandová, Jana
Přikryl, Richard
Vinšová, Hana
Jedináková-Křížová, Věra
Zeman, Josef
description Mineralogical changes in the bentonite-based barrier of the laboratory Mock-Up-CZ experiment were evaluated by X-ray diffraction. The material of the barrier is a mixture of non-activated bentonite (containing Fe-montmorillonite with Ca 2+ exchangeable cation) (85 vol.%), quartz sand (10 vol.%) and graphite (5 vol.%). The barrier has been subjected to thermal stress (up to 90 °C) and synthetic “granitic” water for 45 months. From 70 analysed samples taken at different depth levels and distances from the source of the heat and/or water, 10 show measurable transformation of original smectites to either mixed illite/smectite structure (3 samples) or to beidellite (7 samples). Formation of mixed illite/smectite structure was restricted to the low temperature field (40–50 °C) whilst beidellite occurs in zones affected by higher temperature (50–80 °C). The low extent of smectite transformation (1–2 wt.%) is due both to the relatively short time of the experiment in contrast to the duration of similar processes in nature and also to a limited supply of potassium cations from synthetic water used for hydration. Along with the above mentioned changes, newly formed gypsum bordered by illite aureol was detected in the upper part of the experimental set-up, i.e. in the zone in direct contact to the source of the water. Gypsum formation is interpreted as due to the oxidation of pyrite, a phase available either from the original bentonite where it is a common accessory or from the graphite used in the system due to heat transfer. In contrast to the non-transformed mixture the several mm wide illitic aureol of gypsum clusters shows a significantly lower ion exchange ability.
doi_str_mv 10.1016/j.clay.2009.11.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36393561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016913170900307X</els_id><sourcerecordid>36393561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-549284051aefef54fd6d63003a9dc6cc5a98df5f0c285902042efece6f97895d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkxZYEvwJU5tiQVVUJBasdCFxXKd49YldYqdAn17HLViZDrD-f5z-RC6JrggmFR368I0el9QjGVBSIEJOUEDIkY0l5izUzRIkMwJI6NzdBHjGmNCBZcDNJk5D0E37dIZ3WRmpf0SYuZ8tgDftd51kC10CA5C9u26VWrMWvORz7f5-D2Dny0Et0nkJTqzuolwdaxDNH96fBs_59PXycv4YZprJsou56WkosScaLBgeWnrqq4YxkzL2lTGcC1FbbnFpj8PU1zSBBqorBwJyWs2RLeHudvQfu4gdmrjooGm0R7aXVSsYpLxiiSQHkAT2hgDWLVNl-qwVwSr3plaq96Z6p0pQlRylkI3x-k6Jh02aG9c_EtSWmIhpEjc_YGD9OpXcqOiceAN1C6A6VTduv_W_AIb0IJO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36393561</pqid></control><display><type>article</type><title>Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kolaříková, Irena ; Švandová, Jana ; Přikryl, Richard ; Vinšová, Hana ; Jedináková-Křížová, Věra ; Zeman, Josef</creator><creatorcontrib>Kolaříková, Irena ; Švandová, Jana ; Přikryl, Richard ; Vinšová, Hana ; Jedináková-Křížová, Věra ; Zeman, Josef</creatorcontrib><description>Mineralogical changes in the bentonite-based barrier of the laboratory Mock-Up-CZ experiment were evaluated by X-ray diffraction. The material of the barrier is a mixture of non-activated bentonite (containing Fe-montmorillonite with Ca 2+ exchangeable cation) (85 vol.%), quartz sand (10 vol.%) and graphite (5 vol.%). The barrier has been subjected to thermal stress (up to 90 °C) and synthetic “granitic” water for 45 months. From 70 analysed samples taken at different depth levels and distances from the source of the heat and/or water, 10 show measurable transformation of original smectites to either mixed illite/smectite structure (3 samples) or to beidellite (7 samples). Formation of mixed illite/smectite structure was restricted to the low temperature field (40–50 °C) whilst beidellite occurs in zones affected by higher temperature (50–80 °C). The low extent of smectite transformation (1–2 wt.%) is due both to the relatively short time of the experiment in contrast to the duration of similar processes in nature and also to a limited supply of potassium cations from synthetic water used for hydration. Along with the above mentioned changes, newly formed gypsum bordered by illite aureol was detected in the upper part of the experimental set-up, i.e. in the zone in direct contact to the source of the water. Gypsum formation is interpreted as due to the oxidation of pyrite, a phase available either from the original bentonite where it is a common accessory or from the graphite used in the system due to heat transfer. In contrast to the non-transformed mixture the several mm wide illitic aureol of gypsum clusters shows a significantly lower ion exchange ability.</description><identifier>ISSN: 0169-1317</identifier><identifier>EISSN: 1872-9053</identifier><identifier>DOI: 10.1016/j.clay.2009.11.011</identifier><identifier>CODEN: ACLSER</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Beidellite ; Ca-bentonite ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Illite ; Mineralogical changes ; Mineralogy ; Mixed I/S ; Silicates ; Thermal and hydration effect</subject><ispartof>Applied clay science, 2010, Vol.47 (1), p.10-15</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a384t-549284051aefef54fd6d63003a9dc6cc5a98df5f0c285902042efece6f97895d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.clay.2009.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4024,4050,4051,23930,23931,25140,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22408898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolaříková, Irena</creatorcontrib><creatorcontrib>Švandová, Jana</creatorcontrib><creatorcontrib>Přikryl, Richard</creatorcontrib><creatorcontrib>Vinšová, Hana</creatorcontrib><creatorcontrib>Jedináková-Křížová, Věra</creatorcontrib><creatorcontrib>Zeman, Josef</creatorcontrib><title>Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment</title><title>Applied clay science</title><description>Mineralogical changes in the bentonite-based barrier of the laboratory Mock-Up-CZ experiment were evaluated by X-ray diffraction. The material of the barrier is a mixture of non-activated bentonite (containing Fe-montmorillonite with Ca 2+ exchangeable cation) (85 vol.%), quartz sand (10 vol.%) and graphite (5 vol.%). The barrier has been subjected to thermal stress (up to 90 °C) and synthetic “granitic” water for 45 months. From 70 analysed samples taken at different depth levels and distances from the source of the heat and/or water, 10 show measurable transformation of original smectites to either mixed illite/smectite structure (3 samples) or to beidellite (7 samples). Formation of mixed illite/smectite structure was restricted to the low temperature field (40–50 °C) whilst beidellite occurs in zones affected by higher temperature (50–80 °C). The low extent of smectite transformation (1–2 wt.%) is due both to the relatively short time of the experiment in contrast to the duration of similar processes in nature and also to a limited supply of potassium cations from synthetic water used for hydration. Along with the above mentioned changes, newly formed gypsum bordered by illite aureol was detected in the upper part of the experimental set-up, i.e. in the zone in direct contact to the source of the water. Gypsum formation is interpreted as due to the oxidation of pyrite, a phase available either from the original bentonite where it is a common accessory or from the graphite used in the system due to heat transfer. In contrast to the non-transformed mixture the several mm wide illitic aureol of gypsum clusters shows a significantly lower ion exchange ability.</description><subject>Beidellite</subject><subject>Ca-bentonite</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Illite</subject><subject>Mineralogical changes</subject><subject>Mineralogy</subject><subject>Mixed I/S</subject><subject>Silicates</subject><subject>Thermal and hydration effect</subject><issn>0169-1317</issn><issn>1872-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkxZYEvwJU5tiQVVUJBasdCFxXKd49YldYqdAn17HLViZDrD-f5z-RC6JrggmFR368I0el9QjGVBSIEJOUEDIkY0l5izUzRIkMwJI6NzdBHjGmNCBZcDNJk5D0E37dIZ3WRmpf0SYuZ8tgDftd51kC10CA5C9u26VWrMWvORz7f5-D2Dny0Et0nkJTqzuolwdaxDNH96fBs_59PXycv4YZprJsou56WkosScaLBgeWnrqq4YxkzL2lTGcC1FbbnFpj8PU1zSBBqorBwJyWs2RLeHudvQfu4gdmrjooGm0R7aXVSsYpLxiiSQHkAT2hgDWLVNl-qwVwSr3plaq96Z6p0pQlRylkI3x-k6Jh02aG9c_EtSWmIhpEjc_YGD9OpXcqOiceAN1C6A6VTduv_W_AIb0IJO</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kolaříková, Irena</creator><creator>Švandová, Jana</creator><creator>Přikryl, Richard</creator><creator>Vinšová, Hana</creator><creator>Jedináková-Křížová, Věra</creator><creator>Zeman, Josef</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2010</creationdate><title>Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment</title><author>Kolaříková, Irena ; Švandová, Jana ; Přikryl, Richard ; Vinšová, Hana ; Jedináková-Křížová, Věra ; Zeman, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-549284051aefef54fd6d63003a9dc6cc5a98df5f0c285902042efece6f97895d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Beidellite</topic><topic>Ca-bentonite</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Illite</topic><topic>Mineralogical changes</topic><topic>Mineralogy</topic><topic>Mixed I/S</topic><topic>Silicates</topic><topic>Thermal and hydration effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolaříková, Irena</creatorcontrib><creatorcontrib>Švandová, Jana</creatorcontrib><creatorcontrib>Přikryl, Richard</creatorcontrib><creatorcontrib>Vinšová, Hana</creatorcontrib><creatorcontrib>Jedináková-Křížová, Věra</creatorcontrib><creatorcontrib>Zeman, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied clay science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolaříková, Irena</au><au>Švandová, Jana</au><au>Přikryl, Richard</au><au>Vinšová, Hana</au><au>Jedináková-Křížová, Věra</au><au>Zeman, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment</atitle><jtitle>Applied clay science</jtitle><date>2010</date><risdate>2010</risdate><volume>47</volume><issue>1</issue><spage>10</spage><epage>15</epage><pages>10-15</pages><issn>0169-1317</issn><eissn>1872-9053</eissn><coden>ACLSER</coden><abstract>Mineralogical changes in the bentonite-based barrier of the laboratory Mock-Up-CZ experiment were evaluated by X-ray diffraction. The material of the barrier is a mixture of non-activated bentonite (containing Fe-montmorillonite with Ca 2+ exchangeable cation) (85 vol.%), quartz sand (10 vol.%) and graphite (5 vol.%). The barrier has been subjected to thermal stress (up to 90 °C) and synthetic “granitic” water for 45 months. From 70 analysed samples taken at different depth levels and distances from the source of the heat and/or water, 10 show measurable transformation of original smectites to either mixed illite/smectite structure (3 samples) or to beidellite (7 samples). Formation of mixed illite/smectite structure was restricted to the low temperature field (40–50 °C) whilst beidellite occurs in zones affected by higher temperature (50–80 °C). The low extent of smectite transformation (1–2 wt.%) is due both to the relatively short time of the experiment in contrast to the duration of similar processes in nature and also to a limited supply of potassium cations from synthetic water used for hydration. Along with the above mentioned changes, newly formed gypsum bordered by illite aureol was detected in the upper part of the experimental set-up, i.e. in the zone in direct contact to the source of the water. Gypsum formation is interpreted as due to the oxidation of pyrite, a phase available either from the original bentonite where it is a common accessory or from the graphite used in the system due to heat transfer. In contrast to the non-transformed mixture the several mm wide illitic aureol of gypsum clusters shows a significantly lower ion exchange ability.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.clay.2009.11.011</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-1317
ispartof Applied clay science, 2010, Vol.47 (1), p.10-15
issn 0169-1317
1872-9053
language eng
recordid cdi_proquest_miscellaneous_36393561
source Access via ScienceDirect (Elsevier)
subjects Beidellite
Ca-bentonite
Earth sciences
Earth, ocean, space
Exact sciences and technology
Illite
Mineralogical changes
Mineralogy
Mixed I/S
Silicates
Thermal and hydration effect
title Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogical%20changes%20in%20bentonite%20barrier%20within%20Mock-Up-CZ%20experiment&rft.jtitle=Applied%20clay%20science&rft.au=Kola%C5%99%C3%ADkov%C3%A1,%20Irena&rft.date=2010&rft.volume=47&rft.issue=1&rft.spage=10&rft.epage=15&rft.pages=10-15&rft.issn=0169-1317&rft.eissn=1872-9053&rft.coden=ACLSER&rft_id=info:doi/10.1016/j.clay.2009.11.011&rft_dat=%3Cproquest_cross%3E36393561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36393561&rft_id=info:pmid/&rft_els_id=S016913170900307X&rfr_iscdi=true