Mushy magma beneath Yellowstone

A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies which suggests a high degree of crystallization of the underlying magma body. In this study, we show that many of the first teleseismic P‐wave arrivals observed at seismic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2010-01, Vol.37 (1), p.np-n/a
Hauptverfasser: Chu, Risheng, Helmberger, Don V., Sun, Daoyuan, Jackson, Jennifer M., Zhu, Lupei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Geophysical research letters
container_volume 37
creator Chu, Risheng
Helmberger, Don V.
Sun, Daoyuan
Jackson, Jennifer M.
Zhu, Lupei
description A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies which suggests a high degree of crystallization of the underlying magma body. In this study, we show that many of the first teleseismic P‐wave arrivals observed at seismic stations on the edge of the caldera did not travel through the magma body but have taken longer but faster paths around the edge. After applying a number of waveform modeling tools, we obtain much lower seismic velocities than previous studies, 2.3 km/sec (Vp) and 1.1 km/sec (Vs). We estimate the physical state of the magma body by assuming a fluid‐saturated porous material consisting of granite and a mixture of rhyolite melt and water and CO2 at a temperature of 800°C and pressure at 5 km (0.1 GPa). We found that this relatively shallow magma body has a volume of over 4,300 km3 and is about 32% melt saturated with about 8% water plus CO2 by volume.
doi_str_mv 10.1029/2009GL041656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36391544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178133921</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6401-ae26065603a670cef98cd09988c635ac2c2de51e737d9352cdb2e973d968cad43</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRsFZv3i2C4sHo7Dt7lGKjUhV8VU_LdrO10TSp2Yba_94tLUU81NMMzO_75oXQPoYzDESdEwCVdIFhwcUGamDFWBQDyE3UCJWQEym20Y73HwBAgeIGOrit_XDWGpn3kWn1XeHMZNh6c3leTv2kLNwu2hqY3Lu9ZWyi587lU_sq6t4n1-2LbmQEAxwZRwSErkCNkGDdQMU2BaXi2ArKjSWWpI5jJ6lMFeXEpn3ilKSpErE1KaNNdLzwHVflV-38RI8yb8McpnBl7TUVVGHO5uDJWhALiXmMVaz-RznDjFDOSUAP_6AfZV0VYWMtBWYxlYoH6HQB2ar0vnIDPa6ykalmGoOeP0D_fkDAj5aexluTDypT2MyvNIQwJli4QRORBTfNcjdb66mThy4JC-IgihaizE_c90pkqk8twpG57t0luqdebtTrY0cn9AdkPJ70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761483795</pqid></control><display><type>article</type><title>Mushy magma beneath Yellowstone</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chu, Risheng ; Helmberger, Don V. ; Sun, Daoyuan ; Jackson, Jennifer M. ; Zhu, Lupei</creator><creatorcontrib>Chu, Risheng ; Helmberger, Don V. ; Sun, Daoyuan ; Jackson, Jennifer M. ; Zhu, Lupei</creatorcontrib><description>A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies which suggests a high degree of crystallization of the underlying magma body. In this study, we show that many of the first teleseismic P‐wave arrivals observed at seismic stations on the edge of the caldera did not travel through the magma body but have taken longer but faster paths around the edge. After applying a number of waveform modeling tools, we obtain much lower seismic velocities than previous studies, 2.3 km/sec (Vp) and 1.1 km/sec (Vs). We estimate the physical state of the magma body by assuming a fluid‐saturated porous material consisting of granite and a mixture of rhyolite melt and water and CO2 at a temperature of 800°C and pressure at 5 km (0.1 GPa). We found that this relatively shallow magma body has a volume of over 4,300 km3 and is about 32% melt saturated with about 8% water plus CO2 by volume.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL041656</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Calderas ; Carbon dioxide ; Crystallization ; Earth sciences ; Earth, ocean, space ; Electromagnetics ; Exact sciences and technology ; Magma ; Melts ; Plate tectonics ; Porous materials ; Rhyolite ; seismic body waves ; Seismology ; Stations ; Volcanoes ; Waveforms ; Yellowstone magma</subject><ispartof>Geophysical research letters, 2010-01, Vol.37 (1), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6401-ae26065603a670cef98cd09988c635ac2c2de51e737d9352cdb2e973d968cad43</citedby><cites>FETCH-LOGICAL-a6401-ae26065603a670cef98cd09988c635ac2c2de51e737d9352cdb2e973d968cad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL041656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL041656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22446497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Risheng</creatorcontrib><creatorcontrib>Helmberger, Don V.</creatorcontrib><creatorcontrib>Sun, Daoyuan</creatorcontrib><creatorcontrib>Jackson, Jennifer M.</creatorcontrib><creatorcontrib>Zhu, Lupei</creatorcontrib><title>Mushy magma beneath Yellowstone</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies which suggests a high degree of crystallization of the underlying magma body. In this study, we show that many of the first teleseismic P‐wave arrivals observed at seismic stations on the edge of the caldera did not travel through the magma body but have taken longer but faster paths around the edge. After applying a number of waveform modeling tools, we obtain much lower seismic velocities than previous studies, 2.3 km/sec (Vp) and 1.1 km/sec (Vs). We estimate the physical state of the magma body by assuming a fluid‐saturated porous material consisting of granite and a mixture of rhyolite melt and water and CO2 at a temperature of 800°C and pressure at 5 km (0.1 GPa). We found that this relatively shallow magma body has a volume of over 4,300 km3 and is about 32% melt saturated with about 8% water plus CO2 by volume.</description><subject>Calderas</subject><subject>Carbon dioxide</subject><subject>Crystallization</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electromagnetics</subject><subject>Exact sciences and technology</subject><subject>Magma</subject><subject>Melts</subject><subject>Plate tectonics</subject><subject>Porous materials</subject><subject>Rhyolite</subject><subject>seismic body waves</subject><subject>Seismology</subject><subject>Stations</subject><subject>Volcanoes</subject><subject>Waveforms</subject><subject>Yellowstone magma</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctLw0AQxhdRsFZv3i2C4sHo7Dt7lGKjUhV8VU_LdrO10TSp2Yba_94tLUU81NMMzO_75oXQPoYzDESdEwCVdIFhwcUGamDFWBQDyE3UCJWQEym20Y73HwBAgeIGOrit_XDWGpn3kWn1XeHMZNh6c3leTv2kLNwu2hqY3Lu9ZWyi587lU_sq6t4n1-2LbmQEAxwZRwSErkCNkGDdQMU2BaXi2ArKjSWWpI5jJ6lMFeXEpn3ilKSpErE1KaNNdLzwHVflV-38RI8yb8McpnBl7TUVVGHO5uDJWhALiXmMVaz-RznDjFDOSUAP_6AfZV0VYWMtBWYxlYoH6HQB2ar0vnIDPa6ykalmGoOeP0D_fkDAj5aexluTDypT2MyvNIQwJli4QRORBTfNcjdb66mThy4JC-IgihaizE_c90pkqk8twpG57t0luqdebtTrY0cn9AdkPJ70</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Chu, Risheng</creator><creator>Helmberger, Don V.</creator><creator>Sun, Daoyuan</creator><creator>Jackson, Jennifer M.</creator><creator>Zhu, Lupei</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>201001</creationdate><title>Mushy magma beneath Yellowstone</title><author>Chu, Risheng ; Helmberger, Don V. ; Sun, Daoyuan ; Jackson, Jennifer M. ; Zhu, Lupei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6401-ae26065603a670cef98cd09988c635ac2c2de51e737d9352cdb2e973d968cad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calderas</topic><topic>Carbon dioxide</topic><topic>Crystallization</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electromagnetics</topic><topic>Exact sciences and technology</topic><topic>Magma</topic><topic>Melts</topic><topic>Plate tectonics</topic><topic>Porous materials</topic><topic>Rhyolite</topic><topic>seismic body waves</topic><topic>Seismology</topic><topic>Stations</topic><topic>Volcanoes</topic><topic>Waveforms</topic><topic>Yellowstone magma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Risheng</creatorcontrib><creatorcontrib>Helmberger, Don V.</creatorcontrib><creatorcontrib>Sun, Daoyuan</creatorcontrib><creatorcontrib>Jackson, Jennifer M.</creatorcontrib><creatorcontrib>Zhu, Lupei</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Risheng</au><au>Helmberger, Don V.</au><au>Sun, Daoyuan</au><au>Jackson, Jennifer M.</au><au>Zhu, Lupei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mushy magma beneath Yellowstone</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2010-01</date><risdate>2010</risdate><volume>37</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies which suggests a high degree of crystallization of the underlying magma body. In this study, we show that many of the first teleseismic P‐wave arrivals observed at seismic stations on the edge of the caldera did not travel through the magma body but have taken longer but faster paths around the edge. After applying a number of waveform modeling tools, we obtain much lower seismic velocities than previous studies, 2.3 km/sec (Vp) and 1.1 km/sec (Vs). We estimate the physical state of the magma body by assuming a fluid‐saturated porous material consisting of granite and a mixture of rhyolite melt and water and CO2 at a temperature of 800°C and pressure at 5 km (0.1 GPa). We found that this relatively shallow magma body has a volume of over 4,300 km3 and is about 32% melt saturated with about 8% water plus CO2 by volume.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL041656</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2010-01, Vol.37 (1), p.np-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_36391544
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Calderas
Carbon dioxide
Crystallization
Earth sciences
Earth, ocean, space
Electromagnetics
Exact sciences and technology
Magma
Melts
Plate tectonics
Porous materials
Rhyolite
seismic body waves
Seismology
Stations
Volcanoes
Waveforms
Yellowstone magma
title Mushy magma beneath Yellowstone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mushy%20magma%20beneath%20Yellowstone&rft.jtitle=Geophysical%20research%20letters&rft.au=Chu,%20Risheng&rft.date=2010-01&rft.volume=37&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL041656&rft_dat=%3Cproquest_cross%3E2178133921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=761483795&rft_id=info:pmid/&rfr_iscdi=true