Karhunen–Loève spectral analysis in multiresolution decomposition
In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distin...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2009-06, Vol.13 (2), p.165-170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 2 |
container_start_page | 165 |
container_title | Computational geosciences |
container_volume | 13 |
creator | Leite, F. E. A. Montagne, Raúl Corso, G. Lucena, L. S. |
description | In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève (
KL
) space. Using
KL
decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the
KL
spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized. |
doi_str_mv | 10.1007/s10596-008-9091-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36382086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895902391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLfiwVt0Jm3T5CjrX1zwoueQpql26TY1aQVvvoMv4Xv4Jj6JWSoIgqeZge_3g_kIOUQ4QYDiNCDkklMAQSVIpLBFZpgXKcVMyu24ZwxoRIpdshfCCgBkkeKMnN9q_zR2tvt6e1-6z48Xm4TemsHrNtGdbl9DE5KmS9ZjOzTeBteOQ-O6pLLGrXsXms21T3Zq3QZ78DPn5OHy4n5xTZd3VzeLsyU1jCNQ1KJAXqHWVc0yLEBUwkpZgi1Lg2hMpYsaRZVLXRkhoQTGMC9zjjwFWWbpnBxPvb13z6MNg1o3wdi21Z11Y1ApTwUDwSN49AdcudHHd4JikAseKYwQTpDxLgRva9X7Zq39q0JQG6lqkqqiVLWRqiBm2JQJke0erf8t_j_0DdOoe7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205868201</pqid></control><display><type>article</type><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</creator><creatorcontrib>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</creatorcontrib><description>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève (
KL
) space. Using
KL
decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the
KL
spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-008-9091-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Decomposition ; Earth and Environmental Science ; Earth Sciences ; Geophysics ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Oil and gas industry ; Original Paper ; Seismology ; Soil Science & Conservation ; Spectral analysis ; Wavelet transforms</subject><ispartof>Computational geosciences, 2009-06, Vol.13 (2), p.165-170</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</citedby><cites>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-008-9091-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-008-9091-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Leite, F. E. A.</creatorcontrib><creatorcontrib>Montagne, Raúl</creatorcontrib><creatorcontrib>Corso, G.</creatorcontrib><creatorcontrib>Lucena, L. S.</creatorcontrib><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève (
KL
) space. Using
KL
decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the
KL
spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</description><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Oil and gas industry</subject><subject>Original Paper</subject><subject>Seismology</subject><subject>Soil Science & Conservation</subject><subject>Spectral analysis</subject><subject>Wavelet transforms</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9KxDAQh4MouK4-gLfiwVt0Jm3T5CjrX1zwoueQpql26TY1aQVvvoMv4Xv4Jj6JWSoIgqeZge_3g_kIOUQ4QYDiNCDkklMAQSVIpLBFZpgXKcVMyu24ZwxoRIpdshfCCgBkkeKMnN9q_zR2tvt6e1-6z48Xm4TemsHrNtGdbl9DE5KmS9ZjOzTeBteOQ-O6pLLGrXsXms21T3Zq3QZ78DPn5OHy4n5xTZd3VzeLsyU1jCNQ1KJAXqHWVc0yLEBUwkpZgi1Lg2hMpYsaRZVLXRkhoQTGMC9zjjwFWWbpnBxPvb13z6MNg1o3wdi21Z11Y1ApTwUDwSN49AdcudHHd4JikAseKYwQTpDxLgRva9X7Zq39q0JQG6lqkqqiVLWRqiBm2JQJke0erf8t_j_0DdOoe7E</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Leite, F. E. A.</creator><creator>Montagne, Raúl</creator><creator>Corso, G.</creator><creator>Lucena, L. S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SM</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090601</creationdate><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><author>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Oil and gas industry</topic><topic>Original Paper</topic><topic>Seismology</topic><topic>Soil Science & Conservation</topic><topic>Spectral analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leite, F. E. A.</creatorcontrib><creatorcontrib>Montagne, Raúl</creatorcontrib><creatorcontrib>Corso, G.</creatorcontrib><creatorcontrib>Lucena, L. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leite, F. E. A.</au><au>Montagne, Raúl</au><au>Corso, G.</au><au>Lucena, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Karhunen–Loève spectral analysis in multiresolution decomposition</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>165</spage><epage>170</epage><pages>165-170</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève (
KL
) space. Using
KL
decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the
KL
spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-008-9091-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2009-06, Vol.13 (2), p.165-170 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_36382086 |
source | SpringerLink Journals - AutoHoldings |
subjects | Decomposition Earth and Environmental Science Earth Sciences Geophysics Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mathematical Modeling and Industrial Mathematics Oil and gas industry Original Paper Seismology Soil Science & Conservation Spectral analysis Wavelet transforms |
title | Karhunen–Loève spectral analysis in multiresolution decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Karhunen%E2%80%93Lo%C3%A8ve%20spectral%20analysis%20in%20multiresolution%20decomposition&rft.jtitle=Computational%20geosciences&rft.au=Leite,%20F.%20E.%20A.&rft.date=2009-06-01&rft.volume=13&rft.issue=2&rft.spage=165&rft.epage=170&rft.pages=165-170&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-008-9091-0&rft_dat=%3Cproquest_cross%3E1895902391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205868201&rft_id=info:pmid/&rfr_iscdi=true |