Karhunen–Loève spectral analysis in multiresolution decomposition

In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2009-06, Vol.13 (2), p.165-170
Hauptverfasser: Leite, F. E. A., Montagne, Raúl, Corso, G., Lucena, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 165
container_title Computational geosciences
container_volume 13
creator Leite, F. E. A.
Montagne, Raúl
Corso, G.
Lucena, L. S.
description In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the KL spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.
doi_str_mv 10.1007/s10596-008-9091-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36382086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895902391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</originalsourceid><addsrcrecordid>eNp1kM9KxDAQh4MouK4-gLfiwVt0Jm3T5CjrX1zwoueQpql26TY1aQVvvoMv4Xv4Jj6JWSoIgqeZge_3g_kIOUQ4QYDiNCDkklMAQSVIpLBFZpgXKcVMyu24ZwxoRIpdshfCCgBkkeKMnN9q_zR2tvt6e1-6z48Xm4TemsHrNtGdbl9DE5KmS9ZjOzTeBteOQ-O6pLLGrXsXms21T3Zq3QZ78DPn5OHy4n5xTZd3VzeLsyU1jCNQ1KJAXqHWVc0yLEBUwkpZgi1Lg2hMpYsaRZVLXRkhoQTGMC9zjjwFWWbpnBxPvb13z6MNg1o3wdi21Z11Y1ApTwUDwSN49AdcudHHd4JikAseKYwQTpDxLgRva9X7Zq39q0JQG6lqkqqiVLWRqiBm2JQJke0erf8t_j_0DdOoe7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205868201</pqid></control><display><type>article</type><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</creator><creatorcontrib>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</creatorcontrib><description>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the KL spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-008-9091-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Decomposition ; Earth and Environmental Science ; Earth Sciences ; Geophysics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Oil and gas industry ; Original Paper ; Seismology ; Soil Science &amp; Conservation ; Spectral analysis ; Wavelet transforms</subject><ispartof>Computational geosciences, 2009-06, Vol.13 (2), p.165-170</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</citedby><cites>FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-008-9091-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-008-9091-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Leite, F. E. A.</creatorcontrib><creatorcontrib>Montagne, Raúl</creatorcontrib><creatorcontrib>Corso, G.</creatorcontrib><creatorcontrib>Lucena, L. S.</creatorcontrib><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the KL spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</description><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Oil and gas industry</subject><subject>Original Paper</subject><subject>Seismology</subject><subject>Soil Science &amp; Conservation</subject><subject>Spectral analysis</subject><subject>Wavelet transforms</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9KxDAQh4MouK4-gLfiwVt0Jm3T5CjrX1zwoueQpql26TY1aQVvvoMv4Xv4Jj6JWSoIgqeZge_3g_kIOUQ4QYDiNCDkklMAQSVIpLBFZpgXKcVMyu24ZwxoRIpdshfCCgBkkeKMnN9q_zR2tvt6e1-6z48Xm4TemsHrNtGdbl9DE5KmS9ZjOzTeBteOQ-O6pLLGrXsXms21T3Zq3QZ78DPn5OHy4n5xTZd3VzeLsyU1jCNQ1KJAXqHWVc0yLEBUwkpZgi1Lg2hMpYsaRZVLXRkhoQTGMC9zjjwFWWbpnBxPvb13z6MNg1o3wdi21Z11Y1ApTwUDwSN49AdcudHHd4JikAseKYwQTpDxLgRva9X7Zq39q0JQG6lqkqqiVLWRqiBm2JQJke0erf8t_j_0DdOoe7E</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Leite, F. E. A.</creator><creator>Montagne, Raúl</creator><creator>Corso, G.</creator><creator>Lucena, L. S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SM</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090601</creationdate><title>Karhunen–Loève spectral analysis in multiresolution decomposition</title><author>Leite, F. E. A. ; Montagne, Raúl ; Corso, G. ; Lucena, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2610-1a8716d1aadf241708d8e99b0ebbc11ccda7f18d59adc890b02215b5616309b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Oil and gas industry</topic><topic>Original Paper</topic><topic>Seismology</topic><topic>Soil Science &amp; Conservation</topic><topic>Spectral analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leite, F. E. A.</creatorcontrib><creatorcontrib>Montagne, Raúl</creatorcontrib><creatorcontrib>Corso, G.</creatorcontrib><creatorcontrib>Lucena, L. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leite, F. E. A.</au><au>Montagne, Raúl</au><au>Corso, G.</au><au>Lucena, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Karhunen–Loève spectral analysis in multiresolution decomposition</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>165</spage><epage>170</epage><pages>165-170</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>In this work we develop a method for pinpointing the scales in a multiresolution decomposition where coherent structures appear. A sequence of images yielded from the wavelet multiresolution analysis of seismic signals are analyzed in the Karhunen–Loève ( KL ) space. Using KL decomposition we distinguish two coherent structures in the scale–images: the ground roll and the hyperbolic lines characteristic of geologic layers. Moreover, the KL spectrum also points out the high frequency noise. In this way the method allow us to split three energy mode regimes in the data and, as a consequence, to select the relevant geologic information. The method can be extended to other problems where coherent structures need to be recognized.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-008-9091-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2009-06, Vol.13 (2), p.165-170
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_miscellaneous_36382086
source SpringerLink Journals - AutoHoldings
subjects Decomposition
Earth and Environmental Science
Earth Sciences
Geophysics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical Modeling and Industrial Mathematics
Oil and gas industry
Original Paper
Seismology
Soil Science & Conservation
Spectral analysis
Wavelet transforms
title Karhunen–Loève spectral analysis in multiresolution decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Karhunen%E2%80%93Lo%C3%A8ve%20spectral%20analysis%20in%20multiresolution%20decomposition&rft.jtitle=Computational%20geosciences&rft.au=Leite,%20F.%20E.%20A.&rft.date=2009-06-01&rft.volume=13&rft.issue=2&rft.spage=165&rft.epage=170&rft.pages=165-170&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-008-9091-0&rft_dat=%3Cproquest_cross%3E1895902391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205868201&rft_id=info:pmid/&rfr_iscdi=true