Competitive facility location models

Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2009-06, Vol.49 (6), p.994-1009
Hauptverfasser: Kononov, A. V., Kochetov, Yu. A., Plyasunov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1009
container_issue 6
container_start_page 994
container_title Computational mathematics and mathematical physics
container_volume 49
creator Kononov, A. V.
Kochetov, Yu. A.
Plyasunov, A. V.
description Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.
doi_str_mv 10.1134/S0965542509060086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894071991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHdFxF31JWle2qUUv2DAhbMPSSeRDG0zJh1h_r0tFQTF1Vvccy6PS8glhVtKeXH3BhUKUTABFSBAiUdkQYUQOSKyY7KY4nzKT8lZSlsAilXJF-S6Dt3ODn7wnzZzuvGtHw5ZGxo9-NBnXdjYNp2TE6fbZC--75KsHx_W9XO-en16qe9XecMLHPKqkuAYNQZ5I8CWTlJDhSs4oEBBS9xozY0pJeVYgBGyFAAgrWNouON8SW7m2l0MH3ubBtX51Ni21b0N-6Q4cikqmMCrX-A27GM_vqYYG7vHCeQI0RlqYkgpWqd20Xc6HhQFNW2m_mw2Omx20sj27zb-FP8vfQHtg2rt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223649067</pqid></control><display><type>article</type><title>Competitive facility location models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</creator><creatorcontrib>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</creatorcontrib><description>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542509060086</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Boolean ; Competition ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Game theory ; Mathematics ; Mathematics and Statistics ; Operations research ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2009-06, Vol.49 (6), p.994-1009</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</citedby><cites>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542509060086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542509060086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kononov, A. V.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Plyasunov, A. V.</creatorcontrib><title>Competitive facility location models</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</description><subject>Boolean</subject><subject>Competition</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Game theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations research</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHdFxF31JWle2qUUv2DAhbMPSSeRDG0zJh1h_r0tFQTF1Vvccy6PS8glhVtKeXH3BhUKUTABFSBAiUdkQYUQOSKyY7KY4nzKT8lZSlsAilXJF-S6Dt3ODn7wnzZzuvGtHw5ZGxo9-NBnXdjYNp2TE6fbZC--75KsHx_W9XO-en16qe9XecMLHPKqkuAYNQZ5I8CWTlJDhSs4oEBBS9xozY0pJeVYgBGyFAAgrWNouON8SW7m2l0MH3ubBtX51Ni21b0N-6Q4cikqmMCrX-A27GM_vqYYG7vHCeQI0RlqYkgpWqd20Xc6HhQFNW2m_mw2Omx20sj27zb-FP8vfQHtg2rt</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kononov, A. V.</creator><creator>Kochetov, Yu. A.</creator><creator>Plyasunov, A. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Competitive facility location models</title><author>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boolean</topic><topic>Competition</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Game theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kononov, A. V.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Plyasunov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kononov, A. V.</au><au>Kochetov, Yu. A.</au><au>Plyasunov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive facility location models</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>49</volume><issue>6</issue><spage>994</spage><epage>1009</epage><pages>994-1009</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542509060086</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2009-06, Vol.49 (6), p.994-1009
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_miscellaneous_36375903
source SpringerLink Journals - AutoHoldings
subjects Boolean
Competition
Computational mathematics
Computational Mathematics and Numerical Analysis
Game theory
Mathematics
Mathematics and Statistics
Operations research
Studies
title Competitive facility location models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20facility%20location%20models&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Kononov,%20A.%20V.&rft.date=2009-06-01&rft.volume=49&rft.issue=6&rft.spage=994&rft.epage=1009&rft.pages=994-1009&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542509060086&rft_dat=%3Cproquest_cross%3E1894071991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223649067&rft_id=info:pmid/&rfr_iscdi=true