Competitive facility location models
Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independ...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2009-06, Vol.49 (6), p.994-1009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1009 |
---|---|
container_issue | 6 |
container_start_page | 994 |
container_title | Computational mathematics and mathematical physics |
container_volume | 49 |
creator | Kononov, A. V. Kochetov, Yu. A. Plyasunov, A. V. |
description | Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved. |
doi_str_mv | 10.1134/S0965542509060086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894071991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHdFxF31JWle2qUUv2DAhbMPSSeRDG0zJh1h_r0tFQTF1Vvccy6PS8glhVtKeXH3BhUKUTABFSBAiUdkQYUQOSKyY7KY4nzKT8lZSlsAilXJF-S6Dt3ODn7wnzZzuvGtHw5ZGxo9-NBnXdjYNp2TE6fbZC--75KsHx_W9XO-en16qe9XecMLHPKqkuAYNQZ5I8CWTlJDhSs4oEBBS9xozY0pJeVYgBGyFAAgrWNouON8SW7m2l0MH3ubBtX51Ni21b0N-6Q4cikqmMCrX-A27GM_vqYYG7vHCeQI0RlqYkgpWqd20Xc6HhQFNW2m_mw2Omx20sj27zb-FP8vfQHtg2rt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223649067</pqid></control><display><type>article</type><title>Competitive facility location models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</creator><creatorcontrib>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</creatorcontrib><description>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542509060086</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Boolean ; Competition ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Game theory ; Mathematics ; Mathematics and Statistics ; Operations research ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2009-06, Vol.49 (6), p.994-1009</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</citedby><cites>FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542509060086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542509060086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kononov, A. V.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Plyasunov, A. V.</creatorcontrib><title>Competitive facility location models</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</description><subject>Boolean</subject><subject>Competition</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Game theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations research</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHdFxF31JWle2qUUv2DAhbMPSSeRDG0zJh1h_r0tFQTF1Vvccy6PS8glhVtKeXH3BhUKUTABFSBAiUdkQYUQOSKyY7KY4nzKT8lZSlsAilXJF-S6Dt3ODn7wnzZzuvGtHw5ZGxo9-NBnXdjYNp2TE6fbZC--75KsHx_W9XO-en16qe9XecMLHPKqkuAYNQZ5I8CWTlJDhSs4oEBBS9xozY0pJeVYgBGyFAAgrWNouON8SW7m2l0MH3ubBtX51Ni21b0N-6Q4cikqmMCrX-A27GM_vqYYG7vHCeQI0RlqYkgpWqd20Xc6HhQFNW2m_mw2Omx20sj27zb-FP8vfQHtg2rt</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kononov, A. V.</creator><creator>Kochetov, Yu. A.</creator><creator>Plyasunov, A. V.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Competitive facility location models</title><author>Kononov, A. V. ; Kochetov, Yu. A. ; Plyasunov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-9970f21bb63c50e8f71b15f4306565186daa3bb8713640b57850007ef26b3f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boolean</topic><topic>Competition</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Game theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kononov, A. V.</creatorcontrib><creatorcontrib>Kochetov, Yu. A.</creatorcontrib><creatorcontrib>Plyasunov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kononov, A. V.</au><au>Kochetov, Yu. A.</au><au>Plyasunov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive facility location models</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>49</volume><issue>6</issue><spage>994</spage><epage>1009</epage><pages>994-1009</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965542509060086</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2009-06, Vol.49 (6), p.994-1009 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_36375903 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boolean Competition Computational mathematics Computational Mathematics and Numerical Analysis Game theory Mathematics Mathematics and Statistics Operations research Studies |
title | Competitive facility location models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20facility%20location%20models&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Kononov,%20A.%20V.&rft.date=2009-06-01&rft.volume=49&rft.issue=6&rft.spage=994&rft.epage=1009&rft.pages=994-1009&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542509060086&rft_dat=%3Cproquest_cross%3E1894071991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223649067&rft_id=info:pmid/&rfr_iscdi=true |