Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition

We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2009-12, Vol.641, p.335-358
Hauptverfasser: DAVIES, CHRISTOPHER J., GUBBINS, DAVID, JIMACK, PETER K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue
container_start_page 335
container_title Journal of fluid mechanics
container_volume 641
creator DAVIES, CHRISTOPHER J.
GUBBINS, DAVID
JIMACK, PETER K.
description We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.
doi_str_mv 10.1017/S0022112009991583
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112009991583</cupid><sourcerecordid>36375627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</originalsourceid><addsrcrecordid>eNp1kF1rFDEYhYMouFZ_gHdB0LvRNx-TzFzKoluhIMUWvAuZJNNNnUnGJFvbf2-GXSookouEnOe8OTkIvSbwngCRH74BUEoIBej7nrQde4I2hIu-kYK3T9FmlZtVf45e5HwLQBj0coPmbQx3zhQfA_YBa5z04u30gFMsuvhwg_Oyd8kbPeG8d9OEf_myx7rS8xKzs3jSxSU9VcudTg-ro1TDXPkhHoKtd9jEYP36xEv0bNRTdq9O-xm6_vzpanveXHzdfdl-vGgMF6w0xA6ynix0LeMGnB7BAhg36FEMUrq6iAYmOOUg3CA1d4xTZtuBc0m5ZGfo3XHukuLPg8tFzT6bml4HFw9ZMcFkK-gKvvkLvI2HFGo2RQl0UlLGKkSOkEkx5-RGtSQ_148pAmptX_3TfvW8PQ3WuXY3Jh2Mz49GSqnoWCcq1xw5n4u7f9R1-qGErCGV2F2qy3ZH5XdoFak8O2XR85C8vXF_Ev8_zW8THaNO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210877233</pqid></control><display><type>article</type><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><source>Cambridge University Press Journals Complete</source><creator>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</creator><creatorcontrib>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</creatorcontrib><description>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112009991583</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>absolute/convective &lt; instability ; Boundary conditions ; Boundary layer ; Convection ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flow pattern ; Fluid dynamics ; Geophysics ; Geophysics. Techniques, methods, instrumentation and models ; rotating flows &lt; geophysical and geological flows ; Steady flow</subject><ispartof>Journal of fluid mechanics, 2009-12, Vol.641, p.335-358</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</citedby><cites>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112009991583/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22268386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DAVIES, CHRISTOPHER J.</creatorcontrib><creatorcontrib>GUBBINS, DAVID</creatorcontrib><creatorcontrib>JIMACK, PETER K.</creatorcontrib><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</description><subject>absolute/convective &lt; instability</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Convection</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow pattern</subject><subject>Fluid dynamics</subject><subject>Geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>rotating flows &lt; geophysical and geological flows</subject><subject>Steady flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1rFDEYhYMouFZ_gHdB0LvRNx-TzFzKoluhIMUWvAuZJNNNnUnGJFvbf2-GXSookouEnOe8OTkIvSbwngCRH74BUEoIBej7nrQde4I2hIu-kYK3T9FmlZtVf45e5HwLQBj0coPmbQx3zhQfA_YBa5z04u30gFMsuvhwg_Oyd8kbPeG8d9OEf_myx7rS8xKzs3jSxSU9VcudTg-ro1TDXPkhHoKtd9jEYP36xEv0bNRTdq9O-xm6_vzpanveXHzdfdl-vGgMF6w0xA6ynix0LeMGnB7BAhg36FEMUrq6iAYmOOUg3CA1d4xTZtuBc0m5ZGfo3XHukuLPg8tFzT6bml4HFw9ZMcFkK-gKvvkLvI2HFGo2RQl0UlLGKkSOkEkx5-RGtSQ_148pAmptX_3TfvW8PQ3WuXY3Jh2Mz49GSqnoWCcq1xw5n4u7f9R1-qGErCGV2F2qy3ZH5XdoFak8O2XR85C8vXF_Ev8_zW8THaNO</recordid><startdate>20091225</startdate><enddate>20091225</enddate><creator>DAVIES, CHRISTOPHER J.</creator><creator>GUBBINS, DAVID</creator><creator>JIMACK, PETER K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20091225</creationdate><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><author>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>absolute/convective &lt; instability</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Convection</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow pattern</topic><topic>Fluid dynamics</topic><topic>Geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>rotating flows &lt; geophysical and geological flows</topic><topic>Steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAVIES, CHRISTOPHER J.</creatorcontrib><creatorcontrib>GUBBINS, DAVID</creatorcontrib><creatorcontrib>JIMACK, PETER K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAVIES, CHRISTOPHER J.</au><au>GUBBINS, DAVID</au><au>JIMACK, PETER K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2009-12-25</date><risdate>2009</risdate><volume>641</volume><spage>335</spage><epage>358</epage><pages>335-358</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112009991583</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2009-12, Vol.641, p.335-358
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_36375627
source Cambridge University Press Journals Complete
subjects absolute/convective < instability
Boundary conditions
Boundary layer
Convection
Earth, ocean, space
Exact sciences and technology
External geophysics
Flow pattern
Fluid dynamics
Geophysics
Geophysics. Techniques, methods, instrumentation and models
rotating flows < geophysical and geological flows
Steady flow
title Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convection%20in%20a%20rapidly%20rotating%20spherical%20shell%20with%20an%20imposed%20laterally%20varying%20thermal%20boundary%20condition&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=DAVIES,%20CHRISTOPHER%20J.&rft.date=2009-12-25&rft.volume=641&rft.spage=335&rft.epage=358&rft.pages=335-358&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112009991583&rft_dat=%3Cproquest_cross%3E36375627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210877233&rft_id=info:pmid/&rft_cupid=10_1017_S0022112009991583&rfr_iscdi=true