Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition
We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2009-12, Vol.641, p.335-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | |
container_start_page | 335 |
container_title | Journal of fluid mechanics |
container_volume | 641 |
creator | DAVIES, CHRISTOPHER J. GUBBINS, DAVID JIMACK, PETER K. |
description | We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times. |
doi_str_mv | 10.1017/S0022112009991583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112009991583</cupid><sourcerecordid>36375627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</originalsourceid><addsrcrecordid>eNp1kF1rFDEYhYMouFZ_gHdB0LvRNx-TzFzKoluhIMUWvAuZJNNNnUnGJFvbf2-GXSookouEnOe8OTkIvSbwngCRH74BUEoIBej7nrQde4I2hIu-kYK3T9FmlZtVf45e5HwLQBj0coPmbQx3zhQfA_YBa5z04u30gFMsuvhwg_Oyd8kbPeG8d9OEf_myx7rS8xKzs3jSxSU9VcudTg-ro1TDXPkhHoKtd9jEYP36xEv0bNRTdq9O-xm6_vzpanveXHzdfdl-vGgMF6w0xA6ynix0LeMGnB7BAhg36FEMUrq6iAYmOOUg3CA1d4xTZtuBc0m5ZGfo3XHukuLPg8tFzT6bml4HFw9ZMcFkK-gKvvkLvI2HFGo2RQl0UlLGKkSOkEkx5-RGtSQ_148pAmptX_3TfvW8PQ3WuXY3Jh2Mz49GSqnoWCcq1xw5n4u7f9R1-qGErCGV2F2qy3ZH5XdoFak8O2XR85C8vXF_Ev8_zW8THaNO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210877233</pqid></control><display><type>article</type><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><source>Cambridge University Press Journals Complete</source><creator>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</creator><creatorcontrib>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</creatorcontrib><description>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112009991583</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>absolute/convective < instability ; Boundary conditions ; Boundary layer ; Convection ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Flow pattern ; Fluid dynamics ; Geophysics ; Geophysics. Techniques, methods, instrumentation and models ; rotating flows < geophysical and geological flows ; Steady flow</subject><ispartof>Journal of fluid mechanics, 2009-12, Vol.641, p.335-358</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</citedby><cites>FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112009991583/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22268386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DAVIES, CHRISTOPHER J.</creatorcontrib><creatorcontrib>GUBBINS, DAVID</creatorcontrib><creatorcontrib>JIMACK, PETER K.</creatorcontrib><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</description><subject>absolute/convective < instability</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Convection</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Flow pattern</subject><subject>Fluid dynamics</subject><subject>Geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>rotating flows < geophysical and geological flows</subject><subject>Steady flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1rFDEYhYMouFZ_gHdB0LvRNx-TzFzKoluhIMUWvAuZJNNNnUnGJFvbf2-GXSookouEnOe8OTkIvSbwngCRH74BUEoIBej7nrQde4I2hIu-kYK3T9FmlZtVf45e5HwLQBj0coPmbQx3zhQfA_YBa5z04u30gFMsuvhwg_Oyd8kbPeG8d9OEf_myx7rS8xKzs3jSxSU9VcudTg-ro1TDXPkhHoKtd9jEYP36xEv0bNRTdq9O-xm6_vzpanveXHzdfdl-vGgMF6w0xA6ynix0LeMGnB7BAhg36FEMUrq6iAYmOOUg3CA1d4xTZtuBc0m5ZGfo3XHukuLPg8tFzT6bml4HFw9ZMcFkK-gKvvkLvI2HFGo2RQl0UlLGKkSOkEkx5-RGtSQ_148pAmptX_3TfvW8PQ3WuXY3Jh2Mz49GSqnoWCcq1xw5n4u7f9R1-qGErCGV2F2qy3ZH5XdoFak8O2XR85C8vXF_Ev8_zW8THaNO</recordid><startdate>20091225</startdate><enddate>20091225</enddate><creator>DAVIES, CHRISTOPHER J.</creator><creator>GUBBINS, DAVID</creator><creator>JIMACK, PETER K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20091225</creationdate><title>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</title><author>DAVIES, CHRISTOPHER J. ; GUBBINS, DAVID ; JIMACK, PETER K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1db7c46d08534c0eaf0d00cebaf6b77e7e71a03642406eb7a4e3423d5b4472473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>absolute/convective < instability</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Convection</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Flow pattern</topic><topic>Fluid dynamics</topic><topic>Geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>rotating flows < geophysical and geological flows</topic><topic>Steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAVIES, CHRISTOPHER J.</creatorcontrib><creatorcontrib>GUBBINS, DAVID</creatorcontrib><creatorcontrib>JIMACK, PETER K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAVIES, CHRISTOPHER J.</au><au>GUBBINS, DAVID</au><au>JIMACK, PETER K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2009-12-25</date><risdate>2009</risdate><volume>641</volume><spage>335</spage><epage>358</epage><pages>335-358</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112009991583</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2009-12, Vol.641, p.335-358 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_36375627 |
source | Cambridge University Press Journals Complete |
subjects | absolute/convective < instability Boundary conditions Boundary layer Convection Earth, ocean, space Exact sciences and technology External geophysics Flow pattern Fluid dynamics Geophysics Geophysics. Techniques, methods, instrumentation and models rotating flows < geophysical and geological flows Steady flow |
title | Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convection%20in%20a%20rapidly%20rotating%20spherical%20shell%20with%20an%20imposed%20laterally%20varying%20thermal%20boundary%20condition&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=DAVIES,%20CHRISTOPHER%20J.&rft.date=2009-12-25&rft.volume=641&rft.spage=335&rft.epage=358&rft.pages=335-358&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112009991583&rft_dat=%3Cproquest_cross%3E36375627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210877233&rft_id=info:pmid/&rft_cupid=10_1017_S0022112009991583&rfr_iscdi=true |