Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data

We present classes of equations for which weak a priori estimates hold and prove the global strong solvability of one system of equations.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2009-06, Vol.45 (6), p.836-861
Hauptverfasser: Otelbaev, M., Zhapsarbaeva, L. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 861
container_issue 6
container_start_page 836
container_title Differential equations
container_volume 45
creator Otelbaev, M.
Zhapsarbaeva, L. K.
description We present classes of equations for which weak a priori estimates hold and prove the global strong solvability of one system of equations.
doi_str_mv 10.1134/S0012266109060068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36365185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894337281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-4973627b4a5154bd58a682157bf2837fede2070fbfa2fa724e8904c552e34a193</originalsourceid><addsrcrecordid>eNp1kU1LxDAQQIMouK7-AG_Bg7dqPpo0PcqiriB4UM9l2k41SzepSXrw39vuCoLiaZiZ94YZhpBzzq44l_n1M2NcCK05K5lmTJsDsuCamUwyIw_JYm5nc_-YnMS4YYyVBVcLElfeJetGP0ba4oCuRdcg9R1N70ij78dkvZtzoAMEqH1vG4ofI-zq1k31te1rDInGAWbV7dQZ3mLCECm4dgJtstDTFhKckqMO-ohn33FJXu9uX1br7PHp_mF185g1ojQpy8tCalHUOSiu8rpVBrQRXBV1J4wsOmxRsIJ1dQeig0LkaEqWN0oJlDnwUi7J5X7uEPzHiDFVWxsb7HtwON1bSS214kZN4MUvcOPH4KbdKiEV54JPqywJ30NN8DEG7Koh2C2Ez4qzav5B9ecHkyP2TpxY94bhZ_D_0hcPnogU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235112197</pqid></control><display><type>article</type><title>Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data</title><source>SpringerLink Journals</source><creator>Otelbaev, M. ; Zhapsarbaeva, L. K.</creator><creatorcontrib>Otelbaev, M. ; Zhapsarbaeva, L. K.</creatorcontrib><description>We present classes of equations for which weak a priori estimates hold and prove the global strong solvability of one system of equations.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266109060068</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Cauchy problems ; Difference and Functional Equations ; Differential equations ; Estimates ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2009-06, Vol.45 (6), p.836-861</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-4973627b4a5154bd58a682157bf2837fede2070fbfa2fa724e8904c552e34a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266109060068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266109060068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Otelbaev, M.</creatorcontrib><creatorcontrib>Zhapsarbaeva, L. K.</creatorcontrib><title>Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We present classes of equations for which weak a priori estimates hold and prove the global strong solvability of one system of equations.</description><subject>Cauchy problems</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Estimates</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1LxDAQQIMouK7-AG_Bg7dqPpo0PcqiriB4UM9l2k41SzepSXrw39vuCoLiaZiZ94YZhpBzzq44l_n1M2NcCK05K5lmTJsDsuCamUwyIw_JYm5nc_-YnMS4YYyVBVcLElfeJetGP0ba4oCuRdcg9R1N70ij78dkvZtzoAMEqH1vG4ofI-zq1k31te1rDInGAWbV7dQZ3mLCECm4dgJtstDTFhKckqMO-ohn33FJXu9uX1br7PHp_mF185g1ojQpy8tCalHUOSiu8rpVBrQRXBV1J4wsOmxRsIJ1dQeig0LkaEqWN0oJlDnwUi7J5X7uEPzHiDFVWxsb7HtwON1bSS214kZN4MUvcOPH4KbdKiEV54JPqywJ30NN8DEG7Koh2C2Ez4qzav5B9ecHkyP2TpxY94bhZ_D_0hcPnogU</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Otelbaev, M.</creator><creator>Zhapsarbaeva, L. K.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data</title><author>Otelbaev, M. ; Zhapsarbaeva, L. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-4973627b4a5154bd58a682157bf2837fede2070fbfa2fa724e8904c552e34a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cauchy problems</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Estimates</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otelbaev, M.</creatorcontrib><creatorcontrib>Zhapsarbaeva, L. K.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otelbaev, M.</au><au>Zhapsarbaeva, L. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>45</volume><issue>6</issue><spage>836</spage><epage>861</epage><pages>836-861</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We present classes of equations for which weak a priori estimates hold and prove the global strong solvability of one system of equations.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0012266109060068</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2009-06, Vol.45 (6), p.836-861
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_36365185
source SpringerLink Journals
subjects Cauchy problems
Difference and Functional Equations
Differential equations
Estimates
Hilbert space
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Studies
title Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20dependence%20of%20the%20solution%20of%20a%20parabolic%20equation%20in%20a%20Hilbert%20space%20on%20the%20parameters%20and%20initial%20data&rft.jtitle=Differential%20equations&rft.au=Otelbaev,%20M.&rft.date=2009-06-01&rft.volume=45&rft.issue=6&rft.spage=836&rft.epage=861&rft.pages=836-861&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266109060068&rft_dat=%3Cproquest_cross%3E1894337281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235112197&rft_id=info:pmid/&rfr_iscdi=true