Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis

The diversity of 184 isolates from rhizosphere and bulk soil samples taken from the Ni hyperaccumulator Alyssum murale, grown in a Ni-rich serpentine soil, was determined by 16S rRNA gene analysis. Restriction digestion of the 16S rRNA gene was used to identify 44 groups. Representatives of each of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2010, Vol.26 (1), p.101-108
Hauptverfasser: Abou-Shanab, R. A. I, van Berkum, P, Angle, J. S, Delorme, T. A, Chaney, R. L, Ghozlan, H. A, Ghanem, K, Moawad, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diversity of 184 isolates from rhizosphere and bulk soil samples taken from the Ni hyperaccumulator Alyssum murale, grown in a Ni-rich serpentine soil, was determined by 16S rRNA gene analysis. Restriction digestion of the 16S rRNA gene was used to identify 44 groups. Representatives of each of these groups were placed within the phyla Proteobacteria, Firmicutes and Actinobacteria by 16S rRNA gene sequence analysis. By combining the 16S rRNA gene restriction data with the gene sequence analysis it was concluded that 44.6% (82/184) of the isolates were placed within the phylum Proteobacteria, among these 35.9% (66/184) were placed within the class α-Proteobacteria, and 20.7% (38/184) had 16S rRNA gene sequences indicative of bacteria within genera that form symbioses with legumes (rhizobia). Of the remaining isolates, 44.6% (82/184) and 5.4% (10/184) were placed within the phyla Actinobacteria and Firmicutes, respectively. No placement was obtained for a small number (10/184) of the isolates. Bacteria of the phyla Proteobacteria and Actinobacteria were the most numerous within the rhizosphere of A. murale and represented 32.1% (59/184) and 42.9% (79/184) of all isolates, respectively. The approach of using 16S rRNA gene sequence analysis in this study has enabled a comprehensive characterization of bacteria that predominate in the rhizosphere of A. murale growing in Ni-contaminated soil.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-009-0148-6