Constructive notions of equicontinuity
In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD- N , and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequ...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2009-06, Vol.48 (5), p.437-448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 5 |
container_start_page | 437 |
container_title | Archive for mathematical logic |
container_volume | 48 |
creator | Bridges, Douglas S. |
description | In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-
N
, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-
N
. |
doi_str_mv | 10.1007/s00153-009-0131-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36359888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1708144921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b07ae9ee0e9e7b9b3a683f203b4256f71216251d9703f6c38f1fc54f830b381d3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4K146C06s7PJJkcpWoWCFz2H3W0iW9pNm2SFvr0p60EELzMMfP_P8DF2i3CPANVDBEBBHEBzQEKuz9gESyo4SCnO2QQ0EReqlJfsKsZNpgulcMLmC9_HFIY2dV921vvU5Xvm3cwehq71fer6oUvHa3bh6m20Nz97yj6en94XL3z1tnxdPK54S6VMvIGqttpayKNqdEO1VOQKoKYshHQVFigLgWtdATnZknLoWlE6RdCQwjVN2Xzs3Qd_GGxMZtfF1m63dW_9EA1JEloplcG7P-DGD6HPvxnUpVKlEicIR6gNPsZgndmHbleHo0EwJ21m1GayNnPSZnTOFGMmZrb_tOFX8b-hb6v1bkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194884858</pqid></control><display><type>article</type><title>Constructive notions of equicontinuity</title><source>SpringerNature Journals</source><creator>Bridges, Douglas S.</creator><creatorcontrib>Bridges, Douglas S.</creatorcontrib><description>In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-
N
, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-
N
.</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s00153-009-0131-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algebra ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Archive for mathematical logic, 2009-06, Vol.48 (5), p.437-448</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b07ae9ee0e9e7b9b3a683f203b4256f71216251d9703f6c38f1fc54f830b381d3</citedby><cites>FETCH-LOGICAL-c346t-b07ae9ee0e9e7b9b3a683f203b4256f71216251d9703f6c38f1fc54f830b381d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00153-009-0131-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00153-009-0131-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bridges, Douglas S.</creatorcontrib><title>Constructive notions of equicontinuity</title><title>Archive for mathematical logic</title><addtitle>Arch. Math. Logic</addtitle><description>In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-
N
, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-
N
.</description><subject>Algebra</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4K146C06s7PJJkcpWoWCFz2H3W0iW9pNm2SFvr0p60EELzMMfP_P8DF2i3CPANVDBEBBHEBzQEKuz9gESyo4SCnO2QQ0EReqlJfsKsZNpgulcMLmC9_HFIY2dV921vvU5Xvm3cwehq71fer6oUvHa3bh6m20Nz97yj6en94XL3z1tnxdPK54S6VMvIGqttpayKNqdEO1VOQKoKYshHQVFigLgWtdATnZknLoWlE6RdCQwjVN2Xzs3Qd_GGxMZtfF1m63dW_9EA1JEloplcG7P-DGD6HPvxnUpVKlEicIR6gNPsZgndmHbleHo0EwJ21m1GayNnPSZnTOFGMmZrb_tOFX8b-hb6v1bkE</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Bridges, Douglas S.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Constructive notions of equicontinuity</title><author>Bridges, Douglas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b07ae9ee0e9e7b9b3a683f203b4256f71216251d9703f6c38f1fc54f830b381d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bridges, Douglas S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bridges, Douglas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructive notions of equicontinuity</atitle><jtitle>Archive for mathematical logic</jtitle><stitle>Arch. Math. Logic</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>48</volume><issue>5</issue><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-
N
, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-
N
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00153-009-0131-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-5846 |
ispartof | Archive for mathematical logic, 2009-06, Vol.48 (5), p.437-448 |
issn | 0933-5846 1432-0665 |
language | eng |
recordid | cdi_proquest_miscellaneous_36359888 |
source | SpringerNature Journals |
subjects | Algebra Mathematical Logic and Foundations Mathematics Mathematics and Statistics Theorems |
title | Constructive notions of equicontinuity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructive%20notions%20of%20equicontinuity&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Bridges,%20Douglas%20S.&rft.date=2009-06-01&rft.volume=48&rft.issue=5&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s00153-009-0131-9&rft_dat=%3Cproquest_cross%3E1708144921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194884858&rft_id=info:pmid/&rfr_iscdi=true |