Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment

The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams. The energy stored in each beam is about 350 MJ. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the accelerator itself, but also to the physics experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2007-02, Vol.54 (1), p.182-185
Hauptverfasser: Chong, D., Fernandez-Hernando, L., Gray, R., Ilgner, C.J., Macpherson, A.L., Oh, A., Pritchard, T.W., Stone, R., Worm, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 182
container_title IEEE transactions on nuclear science
container_volume 54
creator Chong, D.
Fernandez-Hernando, L.
Gray, R.
Ilgner, C.J.
Macpherson, A.L.
Oh, A.
Pritchard, T.W.
Stone, R.
Worm, S.
description The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams. The energy stored in each beam is about 350 MJ. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the accelerator itself, but also to the physics experiments installed. Within the Compact Muon Solenoid experiment (CMS), the use of a Beam Condition Monitor (BCM) is planned to monitor a possible fast increase of the particle flux near the interaction point. The system will flag the onset of adverse beam conditions within the CMS experiment, and, if necessary, input into the beam abort system of the LHC requesting a fast beam dump. Constraints on BCM design from radiation hardness, a minimal material and services budget, and the need for fast signals from sensors with high sensitivity and a large dynamic range, have led to the investigation of synthetic chemical vapor deposited (CVD) diamond for the BCM sensor. In a 5 GeV hadron beam the response of CVD diamonds was tested in fluxes ranging from single minimum ionizing particles (MIPs) to 10 8 MIPs per cm 2 , delivered over 40 ns. The signal response, linearity, and stability of both un-irradiated and irradiated sensors were tested over this flux range, and will be presented herein. The results confirm the applicability of CVD diamond for this beam monitoring application
doi_str_mv 10.1109/TNS.2006.889644
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36359720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4089146</ieee_id><sourcerecordid>2544281131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3434-580bfab9ff0253196970fc42539c525f4e1d6075edb6d1b129a448a1db5721093</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EEqUwM7BYDDCltRPbiUco5UNqYWhhjZzEFq6SOMSJRP89F4IYGJjuTu9zp7t7ETqnZEYpkfPt82YWEiJmSSIFYwdoQjlPAsrj5BBNCKFJIJmUx-jE-x2UjBM-QfpNlbZQnXU1dgZv9nX3rjub4zurKlcX2LgWK3yrVYUXUNtvcu1q24EwiMCDUjUq7_C6B3HjSl07W-DlZ6NbW-m6O0VHRpVen_3EKXq9X24Xj8Hq5eFpcbMK8ohFLOAJyYzKpDEk5BGVQsbE5AxymfOQG6ZpIUjMdZGJgmY0lIqxRNEi43EIP4im6Hqc27Tuo9e-Syvrc12Wqtau96mkTDAueQTk1b9kJCIu45AAePkH3Lm-reEKmBbCi4WgAM1HKG-d9602aQOHq3afUpIO7qTgTjq4k47uQMfF2GG11r80I8mwYvQFI1GJyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912155661</pqid></control><display><type>article</type><title>Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment</title><source>IEEE Electronic Library (IEL)</source><creator>Chong, D. ; Fernandez-Hernando, L. ; Gray, R. ; Ilgner, C.J. ; Macpherson, A.L. ; Oh, A. ; Pritchard, T.W. ; Stone, R. ; Worm, S.</creator><creatorcontrib>Chong, D. ; Fernandez-Hernando, L. ; Gray, R. ; Ilgner, C.J. ; Macpherson, A.L. ; Oh, A. ; Pritchard, T.W. ; Stone, R. ; Worm, S.</creatorcontrib><description>The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams. The energy stored in each beam is about 350 MJ. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the accelerator itself, but also to the physics experiments installed. Within the Compact Muon Solenoid experiment (CMS), the use of a Beam Condition Monitor (BCM) is planned to monitor a possible fast increase of the particle flux near the interaction point. The system will flag the onset of adverse beam conditions within the CMS experiment, and, if necessary, input into the beam abort system of the LHC requesting a fast beam dump. Constraints on BCM design from radiation hardness, a minimal material and services budget, and the need for fast signals from sensors with high sensitivity and a large dynamic range, have led to the investigation of synthetic chemical vapor deposited (CVD) diamond for the BCM sensor. In a 5 GeV hadron beam the response of CVD diamonds was tested in fluxes ranging from single minimum ionizing particles (MIPs) to 10 8 MIPs per cm 2 , delivered over 40 ns. The signal response, linearity, and stability of both un-irradiated and irradiated sensors were tested over this flux range, and will be presented herein. The results confirm the applicability of CVD diamond for this beam monitoring application</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2006.889644</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Beam abort ; Beams (radiation) ; Chemical sensors ; Chemical vapor deposition ; chemical vapor deposition diamond ; Colliding beam accelerators ; Collision mitigation ; Condition monitoring ; Diamonds ; Experiments ; Hadrons ; Large Hadron Collider ; Mesons ; Monitors ; Muons ; Particle accelerators ; Particle beams ; position sensitive detectors ; Proton accelerators ; Proton beams ; radiation detection: radiation detectors ; semiconductor detectors: characterization ; Sensors ; Solenoids</subject><ispartof>IEEE transactions on nuclear science, 2007-02, Vol.54 (1), p.182-185</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3434-580bfab9ff0253196970fc42539c525f4e1d6075edb6d1b129a448a1db5721093</citedby><cites>FETCH-LOGICAL-c3434-580bfab9ff0253196970fc42539c525f4e1d6075edb6d1b129a448a1db5721093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4089146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4089146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chong, D.</creatorcontrib><creatorcontrib>Fernandez-Hernando, L.</creatorcontrib><creatorcontrib>Gray, R.</creatorcontrib><creatorcontrib>Ilgner, C.J.</creatorcontrib><creatorcontrib>Macpherson, A.L.</creatorcontrib><creatorcontrib>Oh, A.</creatorcontrib><creatorcontrib>Pritchard, T.W.</creatorcontrib><creatorcontrib>Stone, R.</creatorcontrib><creatorcontrib>Worm, S.</creatorcontrib><title>Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams. The energy stored in each beam is about 350 MJ. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the accelerator itself, but also to the physics experiments installed. Within the Compact Muon Solenoid experiment (CMS), the use of a Beam Condition Monitor (BCM) is planned to monitor a possible fast increase of the particle flux near the interaction point. The system will flag the onset of adverse beam conditions within the CMS experiment, and, if necessary, input into the beam abort system of the LHC requesting a fast beam dump. Constraints on BCM design from radiation hardness, a minimal material and services budget, and the need for fast signals from sensors with high sensitivity and a large dynamic range, have led to the investigation of synthetic chemical vapor deposited (CVD) diamond for the BCM sensor. In a 5 GeV hadron beam the response of CVD diamonds was tested in fluxes ranging from single minimum ionizing particles (MIPs) to 10 8 MIPs per cm 2 , delivered over 40 ns. The signal response, linearity, and stability of both un-irradiated and irradiated sensors were tested over this flux range, and will be presented herein. The results confirm the applicability of CVD diamond for this beam monitoring application</description><subject>Beam abort</subject><subject>Beams (radiation)</subject><subject>Chemical sensors</subject><subject>Chemical vapor deposition</subject><subject>chemical vapor deposition diamond</subject><subject>Colliding beam accelerators</subject><subject>Collision mitigation</subject><subject>Condition monitoring</subject><subject>Diamonds</subject><subject>Experiments</subject><subject>Hadrons</subject><subject>Large Hadron Collider</subject><subject>Mesons</subject><subject>Monitors</subject><subject>Muons</subject><subject>Particle accelerators</subject><subject>Particle beams</subject><subject>position sensitive detectors</subject><subject>Proton accelerators</subject><subject>Proton beams</subject><subject>radiation detection: radiation detectors</subject><subject>semiconductor detectors: characterization</subject><subject>Sensors</subject><subject>Solenoids</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhi0EEqUwM7BYDDCltRPbiUco5UNqYWhhjZzEFq6SOMSJRP89F4IYGJjuTu9zp7t7ETqnZEYpkfPt82YWEiJmSSIFYwdoQjlPAsrj5BBNCKFJIJmUx-jE-x2UjBM-QfpNlbZQnXU1dgZv9nX3rjub4zurKlcX2LgWK3yrVYUXUNtvcu1q24EwiMCDUjUq7_C6B3HjSl07W-DlZ6NbW-m6O0VHRpVen_3EKXq9X24Xj8Hq5eFpcbMK8ohFLOAJyYzKpDEk5BGVQsbE5AxymfOQG6ZpIUjMdZGJgmY0lIqxRNEi43EIP4im6Hqc27Tuo9e-Syvrc12Wqtau96mkTDAueQTk1b9kJCIu45AAePkH3Lm-reEKmBbCi4WgAM1HKG-d9602aQOHq3afUpIO7qTgTjq4k47uQMfF2GG11r80I8mwYvQFI1GJyg</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Chong, D.</creator><creator>Fernandez-Hernando, L.</creator><creator>Gray, R.</creator><creator>Ilgner, C.J.</creator><creator>Macpherson, A.L.</creator><creator>Oh, A.</creator><creator>Pritchard, T.W.</creator><creator>Stone, R.</creator><creator>Worm, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>200702</creationdate><title>Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment</title><author>Chong, D. ; Fernandez-Hernando, L. ; Gray, R. ; Ilgner, C.J. ; Macpherson, A.L. ; Oh, A. ; Pritchard, T.W. ; Stone, R. ; Worm, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3434-580bfab9ff0253196970fc42539c525f4e1d6075edb6d1b129a448a1db5721093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Beam abort</topic><topic>Beams (radiation)</topic><topic>Chemical sensors</topic><topic>Chemical vapor deposition</topic><topic>chemical vapor deposition diamond</topic><topic>Colliding beam accelerators</topic><topic>Collision mitigation</topic><topic>Condition monitoring</topic><topic>Diamonds</topic><topic>Experiments</topic><topic>Hadrons</topic><topic>Large Hadron Collider</topic><topic>Mesons</topic><topic>Monitors</topic><topic>Muons</topic><topic>Particle accelerators</topic><topic>Particle beams</topic><topic>position sensitive detectors</topic><topic>Proton accelerators</topic><topic>Proton beams</topic><topic>radiation detection: radiation detectors</topic><topic>semiconductor detectors: characterization</topic><topic>Sensors</topic><topic>Solenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, D.</creatorcontrib><creatorcontrib>Fernandez-Hernando, L.</creatorcontrib><creatorcontrib>Gray, R.</creatorcontrib><creatorcontrib>Ilgner, C.J.</creatorcontrib><creatorcontrib>Macpherson, A.L.</creatorcontrib><creatorcontrib>Oh, A.</creatorcontrib><creatorcontrib>Pritchard, T.W.</creatorcontrib><creatorcontrib>Stone, R.</creatorcontrib><creatorcontrib>Worm, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, D.</au><au>Fernandez-Hernando, L.</au><au>Gray, R.</au><au>Ilgner, C.J.</au><au>Macpherson, A.L.</au><au>Oh, A.</au><au>Pritchard, T.W.</au><au>Stone, R.</au><au>Worm, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2007-02</date><risdate>2007</risdate><volume>54</volume><issue>1</issue><spage>182</spage><epage>185</epage><pages>182-185</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams. The energy stored in each beam is about 350 MJ. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the accelerator itself, but also to the physics experiments installed. Within the Compact Muon Solenoid experiment (CMS), the use of a Beam Condition Monitor (BCM) is planned to monitor a possible fast increase of the particle flux near the interaction point. The system will flag the onset of adverse beam conditions within the CMS experiment, and, if necessary, input into the beam abort system of the LHC requesting a fast beam dump. Constraints on BCM design from radiation hardness, a minimal material and services budget, and the need for fast signals from sensors with high sensitivity and a large dynamic range, have led to the investigation of synthetic chemical vapor deposited (CVD) diamond for the BCM sensor. In a 5 GeV hadron beam the response of CVD diamonds was tested in fluxes ranging from single minimum ionizing particles (MIPs) to 10 8 MIPs per cm 2 , delivered over 40 ns. The signal response, linearity, and stability of both un-irradiated and irradiated sensors were tested over this flux range, and will be presented herein. The results confirm the applicability of CVD diamond for this beam monitoring application</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2006.889644</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2007-02, Vol.54 (1), p.182-185
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_36359720
source IEEE Electronic Library (IEL)
subjects Beam abort
Beams (radiation)
Chemical sensors
Chemical vapor deposition
chemical vapor deposition diamond
Colliding beam accelerators
Collision mitigation
Condition monitoring
Diamonds
Experiments
Hadrons
Large Hadron Collider
Mesons
Monitors
Muons
Particle accelerators
Particle beams
position sensitive detectors
Proton accelerators
Proton beams
radiation detection: radiation detectors
semiconductor detectors: characterization
Sensors
Solenoids
title Validation of Synthetic Diamond for a Beam Condition Monitor for the Compact Muon Solenoid Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20Synthetic%20Diamond%20for%20a%20Beam%20Condition%20Monitor%20for%20the%20Compact%20Muon%20Solenoid%20Experiment&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Chong,%20D.&rft.date=2007-02&rft.volume=54&rft.issue=1&rft.spage=182&rft.epage=185&rft.pages=182-185&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2006.889644&rft_dat=%3Cproquest_RIE%3E2544281131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912155661&rft_id=info:pmid/&rft_ieee_id=4089146&rfr_iscdi=true