Recognition of Dialogue Acts in Multiparty Meetings Using a Switching DBN

This paper is concerned with the automatic recognition of dialogue acts (DAs) in multiparty conversational speech. We present a joint generative model for DA recognition in which segmentation and classification of DAs are carried out in parallel. Our approach to DA recognition is based on a switchin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2008-09, Vol.16 (7), p.1303-1314
Hauptverfasser: Dielmann, A., Renals, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the automatic recognition of dialogue acts (DAs) in multiparty conversational speech. We present a joint generative model for DA recognition in which segmentation and classification of DAs are carried out in parallel. Our approach to DA recognition is based on a switching dynamic Bayesian network (DBN) architecture. This generative approach models a set of features, related to lexical content and prosody, and incorporates a weighted interpolated factored language model. The switching DBN coordinates the recognition process by integrating the component models. The factored language model, which is estimated from multiple conversational data corpora, is used in conjunction with additional task-specific language models. In conjunction with this joint generative model, we have also investigated the use of a discriminative approach, based on conditional random fields, to perform a reclassification of the segmented DAs. We have carried out experiments on the AMI corpus of multimodal meeting recordings, using both manually transcribed speech, and the output of an automatic speech recognizer, and using different configurations of the generative model. Our results indicate that the system performs well both on reference and fully automatic transcriptions. A further significant improvement in recognition accuracy is obtained by the application of the discriminative reranking approach based on conditional random fields.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2008.922463