The IBEX-Lo Sensor
The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric...
Gespeichert in:
Veröffentlicht in: | Space science reviews 2009-08, Vol.146 (1-4), p.117-147 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1-4 |
container_start_page | 117 |
container_title | Space science reviews |
container_volume | 146 |
creator | Fuselier, S. A. Bochsler, P. Chornay, D. Clark, G. Crew, G. B. Dunn, G. Ellis, S. Friedmann, T. Funsten, H. O. Ghielmetti, A. G. Googins, J. Granoff, M. S. Hamilton, J. W. Hanley, J. Heirtzler, D. Hertzberg, E. Isaac, D. King, B. Knauss, U. Kucharek, H. Kudirka, F. Livi, S. Lobell, J. Longworth, S. Mashburn, K. McComas, D. J. Möbius, E. Moore, A. S. Moore, T. E. Nemanich, R. J. Nolin, J. O’Neal, M. Piazza, D. Peterson, L. Pope, S. E. Rosmarynowski, P. Saul, L. A. Scherrer, J. R. Scheer, J. A. Schlemm, C. Schwadron, N. A. Tillier, C. Turco, S. Tyler, J. Vosbury, M. Wieser, M. Wurz, P. Zaffke, S. |
description | The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission. |
doi_str_mv | 10.1007/s11214-009-9495-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36353267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895886841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-cd3c1c2afd58d653895538dc17aef22e117740b59fd84138a338ae4581a11a873</originalsourceid><addsrcrecordid>eNqFkEFLAzEQRoMoWFcv3rwVD96imcxmMzlqqVooeLCCtxCzWW1pd2vSHvz3TVlBEMTDzFze98E8xi5AXIMQ-iYBSCi5EIab0ihOB2wASktuKi0P2UAIJF6hoGN2ktJCiH1KD9j57CMMJ3fjVz7ths-hTV08ZUeNW6Zw9n0L9nI_no0e-fTpYTK6nXKPWm-4r9GDl66pFdWVQjIqr9qDdqGRMgBoXYo3ZZqaSkBymCeUisABONJYsKu-dx27z21IG7uaJx-WS9eGbpssVqhQVv-DEhBkBSaDl7_ARbeNbX7CkpYkCXNnwaCHfOxSiqGx6zhfufhlQdi9Fdu7tNml3bu0lDOyz6TMtu8h_hT_HdoBE_JyNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872828336</pqid></control><display><type>article</type><title>The IBEX-Lo Sensor</title><source>SpringerLink Journals</source><creator>Fuselier, S. A. ; Bochsler, P. ; Chornay, D. ; Clark, G. ; Crew, G. B. ; Dunn, G. ; Ellis, S. ; Friedmann, T. ; Funsten, H. O. ; Ghielmetti, A. G. ; Googins, J. ; Granoff, M. S. ; Hamilton, J. W. ; Hanley, J. ; Heirtzler, D. ; Hertzberg, E. ; Isaac, D. ; King, B. ; Knauss, U. ; Kucharek, H. ; Kudirka, F. ; Livi, S. ; Lobell, J. ; Longworth, S. ; Mashburn, K. ; McComas, D. J. ; Möbius, E. ; Moore, A. S. ; Moore, T. E. ; Nemanich, R. J. ; Nolin, J. ; O’Neal, M. ; Piazza, D. ; Peterson, L. ; Pope, S. E. ; Rosmarynowski, P. ; Saul, L. A. ; Scherrer, J. R. ; Scheer, J. A. ; Schlemm, C. ; Schwadron, N. A. ; Tillier, C. ; Turco, S. ; Tyler, J. ; Vosbury, M. ; Wieser, M. ; Wurz, P. ; Zaffke, S.</creator><creatorcontrib>Fuselier, S. A. ; Bochsler, P. ; Chornay, D. ; Clark, G. ; Crew, G. B. ; Dunn, G. ; Ellis, S. ; Friedmann, T. ; Funsten, H. O. ; Ghielmetti, A. G. ; Googins, J. ; Granoff, M. S. ; Hamilton, J. W. ; Hanley, J. ; Heirtzler, D. ; Hertzberg, E. ; Isaac, D. ; King, B. ; Knauss, U. ; Kucharek, H. ; Kudirka, F. ; Livi, S. ; Lobell, J. ; Longworth, S. ; Mashburn, K. ; McComas, D. J. ; Möbius, E. ; Moore, A. S. ; Moore, T. E. ; Nemanich, R. J. ; Nolin, J. ; O’Neal, M. ; Piazza, D. ; Peterson, L. ; Pope, S. E. ; Rosmarynowski, P. ; Saul, L. A. ; Scherrer, J. R. ; Scheer, J. A. ; Schlemm, C. ; Schwadron, N. A. ; Tillier, C. ; Turco, S. ; Tyler, J. ; Vosbury, M. ; Wieser, M. ; Wurz, P. ; Zaffke, S.</creatorcontrib><description>The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-009-9495-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics ; Astrophysics and Astroparticles ; Energy ; Helium ; Ions ; Oxygen ; Physics ; Physics and Astronomy ; Planetology ; Sensors ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spacecraft</subject><ispartof>Space science reviews, 2009-08, Vol.146 (1-4), p.117-147</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-cd3c1c2afd58d653895538dc17aef22e117740b59fd84138a338ae4581a11a873</citedby><cites>FETCH-LOGICAL-c377t-cd3c1c2afd58d653895538dc17aef22e117740b59fd84138a338ae4581a11a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-009-9495-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-009-9495-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Bochsler, P.</creatorcontrib><creatorcontrib>Chornay, D.</creatorcontrib><creatorcontrib>Clark, G.</creatorcontrib><creatorcontrib>Crew, G. B.</creatorcontrib><creatorcontrib>Dunn, G.</creatorcontrib><creatorcontrib>Ellis, S.</creatorcontrib><creatorcontrib>Friedmann, T.</creatorcontrib><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Ghielmetti, A. G.</creatorcontrib><creatorcontrib>Googins, J.</creatorcontrib><creatorcontrib>Granoff, M. S.</creatorcontrib><creatorcontrib>Hamilton, J. W.</creatorcontrib><creatorcontrib>Hanley, J.</creatorcontrib><creatorcontrib>Heirtzler, D.</creatorcontrib><creatorcontrib>Hertzberg, E.</creatorcontrib><creatorcontrib>Isaac, D.</creatorcontrib><creatorcontrib>King, B.</creatorcontrib><creatorcontrib>Knauss, U.</creatorcontrib><creatorcontrib>Kucharek, H.</creatorcontrib><creatorcontrib>Kudirka, F.</creatorcontrib><creatorcontrib>Livi, S.</creatorcontrib><creatorcontrib>Lobell, J.</creatorcontrib><creatorcontrib>Longworth, S.</creatorcontrib><creatorcontrib>Mashburn, K.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Möbius, E.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Moore, T. E.</creatorcontrib><creatorcontrib>Nemanich, R. J.</creatorcontrib><creatorcontrib>Nolin, J.</creatorcontrib><creatorcontrib>O’Neal, M.</creatorcontrib><creatorcontrib>Piazza, D.</creatorcontrib><creatorcontrib>Peterson, L.</creatorcontrib><creatorcontrib>Pope, S. E.</creatorcontrib><creatorcontrib>Rosmarynowski, P.</creatorcontrib><creatorcontrib>Saul, L. A.</creatorcontrib><creatorcontrib>Scherrer, J. R.</creatorcontrib><creatorcontrib>Scheer, J. A.</creatorcontrib><creatorcontrib>Schlemm, C.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><creatorcontrib>Tillier, C.</creatorcontrib><creatorcontrib>Turco, S.</creatorcontrib><creatorcontrib>Tyler, J.</creatorcontrib><creatorcontrib>Vosbury, M.</creatorcontrib><creatorcontrib>Wieser, M.</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><creatorcontrib>Zaffke, S.</creatorcontrib><title>The IBEX-Lo Sensor</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Energy</subject><subject>Helium</subject><subject>Ions</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Sensors</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spacecraft</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkEFLAzEQRoMoWFcv3rwVD96imcxmMzlqqVooeLCCtxCzWW1pd2vSHvz3TVlBEMTDzFze98E8xi5AXIMQ-iYBSCi5EIab0ihOB2wASktuKi0P2UAIJF6hoGN2ktJCiH1KD9j57CMMJ3fjVz7ths-hTV08ZUeNW6Zw9n0L9nI_no0e-fTpYTK6nXKPWm-4r9GDl66pFdWVQjIqr9qDdqGRMgBoXYo3ZZqaSkBymCeUisABONJYsKu-dx27z21IG7uaJx-WS9eGbpssVqhQVv-DEhBkBSaDl7_ARbeNbX7CkpYkCXNnwaCHfOxSiqGx6zhfufhlQdi9Fdu7tNml3bu0lDOyz6TMtu8h_hT_HdoBE_JyNw</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Fuselier, S. A.</creator><creator>Bochsler, P.</creator><creator>Chornay, D.</creator><creator>Clark, G.</creator><creator>Crew, G. B.</creator><creator>Dunn, G.</creator><creator>Ellis, S.</creator><creator>Friedmann, T.</creator><creator>Funsten, H. O.</creator><creator>Ghielmetti, A. G.</creator><creator>Googins, J.</creator><creator>Granoff, M. S.</creator><creator>Hamilton, J. W.</creator><creator>Hanley, J.</creator><creator>Heirtzler, D.</creator><creator>Hertzberg, E.</creator><creator>Isaac, D.</creator><creator>King, B.</creator><creator>Knauss, U.</creator><creator>Kucharek, H.</creator><creator>Kudirka, F.</creator><creator>Livi, S.</creator><creator>Lobell, J.</creator><creator>Longworth, S.</creator><creator>Mashburn, K.</creator><creator>McComas, D. J.</creator><creator>Möbius, E.</creator><creator>Moore, A. S.</creator><creator>Moore, T. E.</creator><creator>Nemanich, R. J.</creator><creator>Nolin, J.</creator><creator>O’Neal, M.</creator><creator>Piazza, D.</creator><creator>Peterson, L.</creator><creator>Pope, S. E.</creator><creator>Rosmarynowski, P.</creator><creator>Saul, L. A.</creator><creator>Scherrer, J. R.</creator><creator>Scheer, J. A.</creator><creator>Schlemm, C.</creator><creator>Schwadron, N. A.</creator><creator>Tillier, C.</creator><creator>Turco, S.</creator><creator>Tyler, J.</creator><creator>Vosbury, M.</creator><creator>Wieser, M.</creator><creator>Wurz, P.</creator><creator>Zaffke, S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090801</creationdate><title>The IBEX-Lo Sensor</title><author>Fuselier, S. A. ; Bochsler, P. ; Chornay, D. ; Clark, G. ; Crew, G. B. ; Dunn, G. ; Ellis, S. ; Friedmann, T. ; Funsten, H. O. ; Ghielmetti, A. G. ; Googins, J. ; Granoff, M. S. ; Hamilton, J. W. ; Hanley, J. ; Heirtzler, D. ; Hertzberg, E. ; Isaac, D. ; King, B. ; Knauss, U. ; Kucharek, H. ; Kudirka, F. ; Livi, S. ; Lobell, J. ; Longworth, S. ; Mashburn, K. ; McComas, D. J. ; Möbius, E. ; Moore, A. S. ; Moore, T. E. ; Nemanich, R. J. ; Nolin, J. ; O’Neal, M. ; Piazza, D. ; Peterson, L. ; Pope, S. E. ; Rosmarynowski, P. ; Saul, L. A. ; Scherrer, J. R. ; Scheer, J. A. ; Schlemm, C. ; Schwadron, N. A. ; Tillier, C. ; Turco, S. ; Tyler, J. ; Vosbury, M. ; Wieser, M. ; Wurz, P. ; Zaffke, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-cd3c1c2afd58d653895538dc17aef22e117740b59fd84138a338ae4581a11a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Energy</topic><topic>Helium</topic><topic>Ions</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Sensors</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Bochsler, P.</creatorcontrib><creatorcontrib>Chornay, D.</creatorcontrib><creatorcontrib>Clark, G.</creatorcontrib><creatorcontrib>Crew, G. B.</creatorcontrib><creatorcontrib>Dunn, G.</creatorcontrib><creatorcontrib>Ellis, S.</creatorcontrib><creatorcontrib>Friedmann, T.</creatorcontrib><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Ghielmetti, A. G.</creatorcontrib><creatorcontrib>Googins, J.</creatorcontrib><creatorcontrib>Granoff, M. S.</creatorcontrib><creatorcontrib>Hamilton, J. W.</creatorcontrib><creatorcontrib>Hanley, J.</creatorcontrib><creatorcontrib>Heirtzler, D.</creatorcontrib><creatorcontrib>Hertzberg, E.</creatorcontrib><creatorcontrib>Isaac, D.</creatorcontrib><creatorcontrib>King, B.</creatorcontrib><creatorcontrib>Knauss, U.</creatorcontrib><creatorcontrib>Kucharek, H.</creatorcontrib><creatorcontrib>Kudirka, F.</creatorcontrib><creatorcontrib>Livi, S.</creatorcontrib><creatorcontrib>Lobell, J.</creatorcontrib><creatorcontrib>Longworth, S.</creatorcontrib><creatorcontrib>Mashburn, K.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Möbius, E.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Moore, T. E.</creatorcontrib><creatorcontrib>Nemanich, R. J.</creatorcontrib><creatorcontrib>Nolin, J.</creatorcontrib><creatorcontrib>O’Neal, M.</creatorcontrib><creatorcontrib>Piazza, D.</creatorcontrib><creatorcontrib>Peterson, L.</creatorcontrib><creatorcontrib>Pope, S. E.</creatorcontrib><creatorcontrib>Rosmarynowski, P.</creatorcontrib><creatorcontrib>Saul, L. A.</creatorcontrib><creatorcontrib>Scherrer, J. R.</creatorcontrib><creatorcontrib>Scheer, J. A.</creatorcontrib><creatorcontrib>Schlemm, C.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><creatorcontrib>Tillier, C.</creatorcontrib><creatorcontrib>Turco, S.</creatorcontrib><creatorcontrib>Tyler, J.</creatorcontrib><creatorcontrib>Vosbury, M.</creatorcontrib><creatorcontrib>Wieser, M.</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><creatorcontrib>Zaffke, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuselier, S. A.</au><au>Bochsler, P.</au><au>Chornay, D.</au><au>Clark, G.</au><au>Crew, G. B.</au><au>Dunn, G.</au><au>Ellis, S.</au><au>Friedmann, T.</au><au>Funsten, H. O.</au><au>Ghielmetti, A. G.</au><au>Googins, J.</au><au>Granoff, M. S.</au><au>Hamilton, J. W.</au><au>Hanley, J.</au><au>Heirtzler, D.</au><au>Hertzberg, E.</au><au>Isaac, D.</au><au>King, B.</au><au>Knauss, U.</au><au>Kucharek, H.</au><au>Kudirka, F.</au><au>Livi, S.</au><au>Lobell, J.</au><au>Longworth, S.</au><au>Mashburn, K.</au><au>McComas, D. J.</au><au>Möbius, E.</au><au>Moore, A. S.</au><au>Moore, T. E.</au><au>Nemanich, R. J.</au><au>Nolin, J.</au><au>O’Neal, M.</au><au>Piazza, D.</au><au>Peterson, L.</au><au>Pope, S. E.</au><au>Rosmarynowski, P.</au><au>Saul, L. A.</au><au>Scherrer, J. R.</au><au>Scheer, J. A.</au><au>Schlemm, C.</au><au>Schwadron, N. A.</au><au>Tillier, C.</au><au>Turco, S.</au><au>Tyler, J.</au><au>Vosbury, M.</au><au>Wieser, M.</au><au>Wurz, P.</au><au>Zaffke, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The IBEX-Lo Sensor</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>146</volume><issue>1-4</issue><spage>117</spage><epage>147</epage><pages>117-147</pages><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-009-9495-8</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-6308 |
ispartof | Space science reviews, 2009-08, Vol.146 (1-4), p.117-147 |
issn | 0038-6308 1572-9672 |
language | eng |
recordid | cdi_proquest_miscellaneous_36353267 |
source | SpringerLink Journals |
subjects | Aerospace Technology and Astronautics Astrophysics Astrophysics and Astroparticles Energy Helium Ions Oxygen Physics Physics and Astronomy Planetology Sensors Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Spacecraft |
title | The IBEX-Lo Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20IBEX-Lo%20Sensor&rft.jtitle=Space%20science%20reviews&rft.au=Fuselier,%20S.%20A.&rft.date=2009-08-01&rft.volume=146&rft.issue=1-4&rft.spage=117&rft.epage=147&rft.pages=117-147&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-009-9495-8&rft_dat=%3Cproquest_cross%3E1895886841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872828336&rft_id=info:pmid/&rfr_iscdi=true |