A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy
A simple micromechanical model for thermoelastic martensitic phase transitions (PT) is developed. It is deduced from the local description of PT in transforming particles with subsequent usage of average procedure, based on a model for elastic three-phase materials (austenite, martensite and new inf...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 1998-05, Vol.9 (5), p.324-334 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 5 |
container_start_page | 324 |
container_title | Journal of intelligent material systems and structures |
container_volume | 9 |
creator | Levitas, V. I. Idesman, A. V. Stein, E. Spielfeld, J. Hornbogen, E. |
description | A simple micromechanical model for thermoelastic martensitic phase transitions (PT) is developed. It is deduced from the local description of PT in transforming particles with subsequent usage of average procedure, based on a model for elastic three-phase materials (austenite, martensite and new infinitesimal nucleus) under assumption of homogeneity of stresses in each phase. In contrast to known approaches, a new local PT criterion and a corresponding extremum principle for PT with dissipation are used. The macroscopic PT criterion obtained is split into two different equations for description of temperature-induced PT and stress-induced PT. To identify the material parameters of the model and to check its validity, simple one-dimensional experiments were carried out for CuZnAl alloy. The experimental values of martensite start and finish temperatures and austenite finish temperature for temperature-induced PT and the stress-strain diagram for stress-induced direct PT at any fixed temperature have allowed to determine six material parameters of the model for the simplest one-dimensional case. Then model prediction is compared with other independent tests. A good agreement is obtained of the calculated stress-strain curves for reverse PT (martensite-austenite) at 01 = 20C and for direct PT at temperature range of 30—80C with experimental data. Finally, the formula for determination of the transformation heat during temperature-induced PT for the given model is derived. It is shown that the predicted transformation heat is close to the experimental one. |
doi_str_mv | 10.1177/1045389X9800900502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36352575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X9800900502</sage_id><sourcerecordid>26808353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3ca8e1314521408086c0a8be0365a3f65b87381701acf93ea160709c3ad462953</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWKt_wFUW4m7szWTymGUtPgotCiqImyFNMzYlM6lJR-i_N6UFF4K6upfLd86FcxA6J3BFiBADAgWjsnwtJUAJwCA_QD3CKGSSUHmY9gRkW-IYncS4BCCSAe2h8RA_2WblDJ5aHXxj9EK1ViuHp35uHK59wI_RdHNvnIprq_G1WahPm86-xqPurR06PHTOb07RUa1cNGf72UcvtzfPo_ts8nA3Hg0nmS4YWWdUK2kIJQXLSQESJNeg5MwA5UzRmrOZFFQSAUTpuqRGEQ4CSk3VvOB5yWgfXe58V8F_dCauq8ZGbZxTrfFdrCinLGfibzDn6Ttl9B-gkLxgPIH5DkxJxRhMXa2CbVTYVASqbQ_Vzx6S6GLvrmLKtQ6q1TZ-K0UhUxAJG-ywqN5NtfRdaFOKvxl_AXSSkkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26786456</pqid></control><display><type>article</type><title>A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy</title><source>Access via SAGE</source><creator>Levitas, V. I. ; Idesman, A. V. ; Stein, E. ; Spielfeld, J. ; Hornbogen, E.</creator><creatorcontrib>Levitas, V. I. ; Idesman, A. V. ; Stein, E. ; Spielfeld, J. ; Hornbogen, E.</creatorcontrib><description>A simple micromechanical model for thermoelastic martensitic phase transitions (PT) is developed. It is deduced from the local description of PT in transforming particles with subsequent usage of average procedure, based on a model for elastic three-phase materials (austenite, martensite and new infinitesimal nucleus) under assumption of homogeneity of stresses in each phase. In contrast to known approaches, a new local PT criterion and a corresponding extremum principle for PT with dissipation are used. The macroscopic PT criterion obtained is split into two different equations for description of temperature-induced PT and stress-induced PT. To identify the material parameters of the model and to check its validity, simple one-dimensional experiments were carried out for CuZnAl alloy. The experimental values of martensite start and finish temperatures and austenite finish temperature for temperature-induced PT and the stress-strain diagram for stress-induced direct PT at any fixed temperature have allowed to determine six material parameters of the model for the simplest one-dimensional case. Then model prediction is compared with other independent tests. A good agreement is obtained of the calculated stress-strain curves for reverse PT (martensite-austenite) at 01 = 20C and for direct PT at temperature range of 30—80C with experimental data. Finally, the formula for determination of the transformation heat during temperature-induced PT for the given model is derived. It is shown that the predicted transformation heat is close to the experimental one.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X9800900502</identifier><language>eng</language><publisher>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA: SAGE Publications</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Elasticity. Plasticity ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Physics ; Solid-solid transitions ; Specific phase transitions</subject><ispartof>Journal of intelligent material systems and structures, 1998-05, Vol.9 (5), p.324-334</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3ca8e1314521408086c0a8be0365a3f65b87381701acf93ea160709c3ad462953</citedby><cites>FETCH-LOGICAL-c451t-3ca8e1314521408086c0a8be0365a3f65b87381701acf93ea160709c3ad462953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X9800900502$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X9800900502$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21819,23930,23931,25140,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1748140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Levitas, V. I.</creatorcontrib><creatorcontrib>Idesman, A. V.</creatorcontrib><creatorcontrib>Stein, E.</creatorcontrib><creatorcontrib>Spielfeld, J.</creatorcontrib><creatorcontrib>Hornbogen, E.</creatorcontrib><title>A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy</title><title>Journal of intelligent material systems and structures</title><description>A simple micromechanical model for thermoelastic martensitic phase transitions (PT) is developed. It is deduced from the local description of PT in transforming particles with subsequent usage of average procedure, based on a model for elastic three-phase materials (austenite, martensite and new infinitesimal nucleus) under assumption of homogeneity of stresses in each phase. In contrast to known approaches, a new local PT criterion and a corresponding extremum principle for PT with dissipation are used. The macroscopic PT criterion obtained is split into two different equations for description of temperature-induced PT and stress-induced PT. To identify the material parameters of the model and to check its validity, simple one-dimensional experiments were carried out for CuZnAl alloy. The experimental values of martensite start and finish temperatures and austenite finish temperature for temperature-induced PT and the stress-strain diagram for stress-induced direct PT at any fixed temperature have allowed to determine six material parameters of the model for the simplest one-dimensional case. Then model prediction is compared with other independent tests. A good agreement is obtained of the calculated stress-strain curves for reverse PT (martensite-austenite) at 01 = 20C and for direct PT at temperature range of 30—80C with experimental data. Finally, the formula for determination of the transformation heat during temperature-induced PT for the given model is derived. It is shown that the predicted transformation heat is close to the experimental one.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Elasticity. Plasticity</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEUhYMoWKt_wFUW4m7szWTymGUtPgotCiqImyFNMzYlM6lJR-i_N6UFF4K6upfLd86FcxA6J3BFiBADAgWjsnwtJUAJwCA_QD3CKGSSUHmY9gRkW-IYncS4BCCSAe2h8RA_2WblDJ5aHXxj9EK1ViuHp35uHK59wI_RdHNvnIprq_G1WahPm86-xqPurR06PHTOb07RUa1cNGf72UcvtzfPo_ts8nA3Hg0nmS4YWWdUK2kIJQXLSQESJNeg5MwA5UzRmrOZFFQSAUTpuqRGEQ4CSk3VvOB5yWgfXe58V8F_dCauq8ZGbZxTrfFdrCinLGfibzDn6Ttl9B-gkLxgPIH5DkxJxRhMXa2CbVTYVASqbQ_Vzx6S6GLvrmLKtQ6q1TZ-K0UhUxAJG-ywqN5NtfRdaFOKvxl_AXSSkkw</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Levitas, V. I.</creator><creator>Idesman, A. V.</creator><creator>Stein, E.</creator><creator>Spielfeld, J.</creator><creator>Hornbogen, E.</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BQ</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>7SR</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19980501</creationdate><title>A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy</title><author>Levitas, V. I. ; Idesman, A. V. ; Stein, E. ; Spielfeld, J. ; Hornbogen, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3ca8e1314521408086c0a8be0365a3f65b87381701acf93ea160709c3ad462953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Elasticity. Plasticity</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levitas, V. I.</creatorcontrib><creatorcontrib>Idesman, A. V.</creatorcontrib><creatorcontrib>Stein, E.</creatorcontrib><creatorcontrib>Spielfeld, J.</creatorcontrib><creatorcontrib>Hornbogen, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>METADEX</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levitas, V. I.</au><au>Idesman, A. V.</au><au>Stein, E.</au><au>Spielfeld, J.</au><au>Hornbogen, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>9</volume><issue>5</issue><spage>324</spage><epage>334</epage><pages>324-334</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>A simple micromechanical model for thermoelastic martensitic phase transitions (PT) is developed. It is deduced from the local description of PT in transforming particles with subsequent usage of average procedure, based on a model for elastic three-phase materials (austenite, martensite and new infinitesimal nucleus) under assumption of homogeneity of stresses in each phase. In contrast to known approaches, a new local PT criterion and a corresponding extremum principle for PT with dissipation are used. The macroscopic PT criterion obtained is split into two different equations for description of temperature-induced PT and stress-induced PT. To identify the material parameters of the model and to check its validity, simple one-dimensional experiments were carried out for CuZnAl alloy. The experimental values of martensite start and finish temperatures and austenite finish temperature for temperature-induced PT and the stress-strain diagram for stress-induced direct PT at any fixed temperature have allowed to determine six material parameters of the model for the simplest one-dimensional case. Then model prediction is compared with other independent tests. A good agreement is obtained of the calculated stress-strain curves for reverse PT (martensite-austenite) at 01 = 20C and for direct PT at temperature range of 30—80C with experimental data. Finally, the formula for determination of the transformation heat during temperature-induced PT for the given model is derived. It is shown that the predicted transformation heat is close to the experimental one.</abstract><cop>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X9800900502</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 1998-05, Vol.9 (5), p.324-334 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_36352575 |
source | Access via SAGE |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Elasticity. Plasticity Equations of state, phase equilibria, and phase transitions Exact sciences and technology Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Physics Solid-solid transitions Specific phase transitions |
title | A Simple Micromechanical Model for Pseudoelastic Behavior of CuZnAl Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Micromechanical%20Model%20for%20Pseudoelastic%20Behavior%20of%20CuZnAl%20Alloy&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Levitas,%20V.%20I.&rft.date=1998-05-01&rft.volume=9&rft.issue=5&rft.spage=324&rft.epage=334&rft.pages=324-334&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X9800900502&rft_dat=%3Cproquest_cross%3E26808353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26786456&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X9800900502&rfr_iscdi=true |