A survey on metaheuristics for stochastic combinatorial optimization

Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural computing 2009-06, Vol.8 (2), p.239-287
Hauptverfasser: Bianchi, Leonora, Dorigo, Marco, Gambardella, Luca Maria, Gutjahr, Walter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 2
container_start_page 239
container_title Natural computing
container_volume 8
creator Bianchi, Leonora
Dorigo, Marco
Gambardella, Luca Maria
Gutjahr, Walter J.
description Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.
doi_str_mv 10.1007/s11047-008-9098-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36349319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36349319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3704-c3e2173c839c48b32ce2ea5cd04397b5304959a11399142082025f9822f483143</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHfFhbvqvXk0yXIYnzDgRtchE1Mnw7QZk1bQX29LBUFwcx_wncPhEHKOcIUA8jojApclgCo1aFXyAzJDIWmppa4Ox7uSpVSojslJzlsAikLgjNwsitynD_9ZxLZofGc3vk8hd8Hloo6pyF10Gzv-hYvNOrS2iynYXRH3XWjCl-1CbE_JUW132Z_97Dl5ubt9Xj6Uq6f7x-ViVTomgQ_TU5TMKaYdV2tGnafeCvcKnGm5Fgy4FtoiMq2RU1AUqKi1orTmiiFnc3I5-e5TfO997kwTsvO7nW197LNhFeOaoR7Aiz_gNvapHbIZClxVigk6QDhBLsWck6_NPoXGpk-DYMZSzVSqGUo1Y6lmTEAnTR7Y9s2nX-P_Rd8VPXg_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204868352</pqid></control><display><type>article</type><title>A survey on metaheuristics for stochastic combinatorial optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Bianchi, Leonora ; Dorigo, Marco ; Gambardella, Luca Maria ; Gutjahr, Walter J.</creator><creatorcontrib>Bianchi, Leonora ; Dorigo, Marco ; Gambardella, Luca Maria ; Gutjahr, Walter J.</creatorcontrib><description>Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-008-9098-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Evolutionary Biology ; Optimization ; Processor Architectures ; Studies ; Theory of Computation</subject><ispartof>Natural computing, 2009-06, Vol.8 (2), p.239-287</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3704-c3e2173c839c48b32ce2ea5cd04397b5304959a11399142082025f9822f483143</citedby><cites>FETCH-LOGICAL-c3704-c3e2173c839c48b32ce2ea5cd04397b5304959a11399142082025f9822f483143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-008-9098-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-008-9098-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bianchi, Leonora</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Gambardella, Luca Maria</creatorcontrib><creatorcontrib>Gutjahr, Walter J.</creatorcontrib><title>A survey on metaheuristics for stochastic combinatorial optimization</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Evolutionary Biology</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHfFhbvqvXk0yXIYnzDgRtchE1Mnw7QZk1bQX29LBUFwcx_wncPhEHKOcIUA8jojApclgCo1aFXyAzJDIWmppa4Ox7uSpVSojslJzlsAikLgjNwsitynD_9ZxLZofGc3vk8hd8Hloo6pyF10Gzv-hYvNOrS2iynYXRH3XWjCl-1CbE_JUW132Z_97Dl5ubt9Xj6Uq6f7x-ViVTomgQ_TU5TMKaYdV2tGnafeCvcKnGm5Fgy4FtoiMq2RU1AUqKi1orTmiiFnc3I5-e5TfO997kwTsvO7nW197LNhFeOaoR7Aiz_gNvapHbIZClxVigk6QDhBLsWck6_NPoXGpk-DYMZSzVSqGUo1Y6lmTEAnTR7Y9s2nX-P_Rd8VPXg_</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Bianchi, Leonora</creator><creator>Dorigo, Marco</creator><creator>Gambardella, Luca Maria</creator><creator>Gutjahr, Walter J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>A survey on metaheuristics for stochastic combinatorial optimization</title><author>Bianchi, Leonora ; Dorigo, Marco ; Gambardella, Luca Maria ; Gutjahr, Walter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3704-c3e2173c839c48b32ce2ea5cd04397b5304959a11399142082025f9822f483143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Evolutionary Biology</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchi, Leonora</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Gambardella, Luca Maria</creatorcontrib><creatorcontrib>Gutjahr, Walter J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchi, Leonora</au><au>Dorigo, Marco</au><au>Gambardella, Luca Maria</au><au>Gutjahr, Walter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on metaheuristics for stochastic combinatorial optimization</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>8</volume><issue>2</issue><spage>239</spage><epage>287</epage><pages>239-287</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-008-9098-4</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-7818
ispartof Natural computing, 2009-06, Vol.8 (2), p.239-287
issn 1567-7818
1572-9796
language eng
recordid cdi_proquest_miscellaneous_36349319
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Complex Systems
Computer Science
Evolutionary Biology
Optimization
Processor Architectures
Studies
Theory of Computation
title A survey on metaheuristics for stochastic combinatorial optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20metaheuristics%20for%20stochastic%20combinatorial%20optimization&rft.jtitle=Natural%20computing&rft.au=Bianchi,%20Leonora&rft.date=2009-06-01&rft.volume=8&rft.issue=2&rft.spage=239&rft.epage=287&rft.pages=239-287&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-008-9098-4&rft_dat=%3Cproquest_cross%3E36349319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204868352&rft_id=info:pmid/&rfr_iscdi=true