Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing

The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind engineering 2009-05, Vol.33 (3), p.287-297
Hauptverfasser: Rivas, Rajai Aghabi, Clausen, Jens, Hansen, Kurt S., Jensen, Leo E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 3
container_start_page 287
container_title Wind engineering
container_volume 33
creator Rivas, Rajai Aghabi
Clausen, Jens
Hansen, Kurt S.
Jensen, Leo E.
description The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.
doi_str_mv 10.1260/0309-524X.33.3.287
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36349097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43856972</jstor_id><sage_id>10.1260_0309-524X.33.3.287</sage_id><sourcerecordid>43856972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</originalsourceid><addsrcrecordid>eNqNkV1r2zAUhsVYYVm3PzAY6Gp3TvVpWZehrGshkEBTlouBkKWj1MG2Mske9N_XJqWX7a4OHJ7nHHhfhL5RsqSsJFeEE11IJvZLzpd8ySr1AS0YEVUhCNt_RItX4BP6nPORECooFQv05z62_5r-gIdHwLsx1U0PeBtzMzSxn_fbFOsWOhxiwmubDoA3IeTHmAD_bnqPb2zqMq6f8H3Tja0dwONV34NtJ_kLugi2zfD1ZV6ih5ufu-vbYr35dXe9WhdOSDUUVnoodQ2MeiE1OKgDVU4ysKqupKceKNVauloAdxKcZqp0VHuveHA-BH6JfpzvnlL8O0IeTNdkB21re4hjNrzkQhOt3gXZFCZT8r9AVvFyBtkZdCnmnCCYU2o6m54MJWauxszJmzl5w7nhZqpmkq7OUrYHMMc4pn6K523j-9k45iGm1x-CV7LUivFnTDma1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21228367</pqid></control><display><type>article</type><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><creator>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</creator><creatorcontrib>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</creatorcontrib><description>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</description><identifier>ISSN: 0309-524X</identifier><identifier>EISSN: 2048-402X</identifier><identifier>DOI: 10.1260/0309-524X.33.3.287</identifier><language>eng</language><publisher>London, England: Multi-Science Publishing Company</publisher><subject>Algorithms ; Indexing in process ; Modeling ; Q1 ; Sensitivity analysis ; Simulated annealing ; Turbines ; Wind direction ; Wind farms ; Wind power ; Wind turbines ; Wind velocity</subject><ispartof>Wind engineering, 2009-05, Vol.33 (3), p.287-297</ispartof><rights>2009 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</citedby><cites>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43856972$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43856972$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,21800,27905,27906,43602,43603,57998,58231</link.rule.ids></links><search><creatorcontrib>Rivas, Rajai Aghabi</creatorcontrib><creatorcontrib>Clausen, Jens</creatorcontrib><creatorcontrib>Hansen, Kurt S.</creatorcontrib><creatorcontrib>Jensen, Leo E.</creatorcontrib><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><title>Wind engineering</title><description>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</description><subject>Algorithms</subject><subject>Indexing in process</subject><subject>Modeling</subject><subject>Q1</subject><subject>Sensitivity analysis</subject><subject>Simulated annealing</subject><subject>Turbines</subject><subject>Wind direction</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><subject>Wind velocity</subject><issn>0309-524X</issn><issn>2048-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkV1r2zAUhsVYYVm3PzAY6Gp3TvVpWZehrGshkEBTlouBkKWj1MG2Mske9N_XJqWX7a4OHJ7nHHhfhL5RsqSsJFeEE11IJvZLzpd8ySr1AS0YEVUhCNt_RItX4BP6nPORECooFQv05z62_5r-gIdHwLsx1U0PeBtzMzSxn_fbFOsWOhxiwmubDoA3IeTHmAD_bnqPb2zqMq6f8H3Tja0dwONV34NtJ_kLugi2zfD1ZV6ih5ufu-vbYr35dXe9WhdOSDUUVnoodQ2MeiE1OKgDVU4ysKqupKceKNVauloAdxKcZqp0VHuveHA-BH6JfpzvnlL8O0IeTNdkB21re4hjNrzkQhOt3gXZFCZT8r9AVvFyBtkZdCnmnCCYU2o6m54MJWauxszJmzl5w7nhZqpmkq7OUrYHMMc4pn6K523j-9k45iGm1x-CV7LUivFnTDma1g</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Rivas, Rajai Aghabi</creator><creator>Clausen, Jens</creator><creator>Hansen, Kurt S.</creator><creator>Jensen, Leo E.</creator><general>Multi-Science Publishing Company</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><author>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Indexing in process</topic><topic>Modeling</topic><topic>Q1</topic><topic>Sensitivity analysis</topic><topic>Simulated annealing</topic><topic>Turbines</topic><topic>Wind direction</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivas, Rajai Aghabi</creatorcontrib><creatorcontrib>Clausen, Jens</creatorcontrib><creatorcontrib>Hansen, Kurt S.</creatorcontrib><creatorcontrib>Jensen, Leo E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wind engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivas, Rajai Aghabi</au><au>Clausen, Jens</au><au>Hansen, Kurt S.</au><au>Jensen, Leo E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</atitle><jtitle>Wind engineering</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>33</volume><issue>3</issue><spage>287</spage><epage>297</epage><pages>287-297</pages><issn>0309-524X</issn><eissn>2048-402X</eissn><abstract>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</abstract><cop>London, England</cop><pub>Multi-Science Publishing Company</pub><doi>10.1260/0309-524X.33.3.287</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-524X
ispartof Wind engineering, 2009-05, Vol.33 (3), p.287-297
issn 0309-524X
2048-402X
language eng
recordid cdi_proquest_miscellaneous_36349097
source SAGE Complete A-Z List; Jstor Complete Legacy
subjects Algorithms
Indexing in process
Modeling
Q1
Sensitivity analysis
Simulated annealing
Turbines
Wind direction
Wind farms
Wind power
Wind turbines
Wind velocity
title Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Turbine%20Positioning%20Problem%20for%20Large%20Offshore%20Wind%20Farms%20by%20Simulated%20Annealing&rft.jtitle=Wind%20engineering&rft.au=Rivas,%20Rajai%20Aghabi&rft.date=2009-05-01&rft.volume=33&rft.issue=3&rft.spage=287&rft.epage=297&rft.pages=287-297&rft.issn=0309-524X&rft.eissn=2048-402X&rft_id=info:doi/10.1260/0309-524X.33.3.287&rft_dat=%3Cjstor_proqu%3E43856972%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21228367&rft_id=info:pmid/&rft_jstor_id=43856972&rft_sage_id=10.1260_0309-524X.33.3.287&rfr_iscdi=true