Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing
The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local s...
Gespeichert in:
Veröffentlicht in: | Wind engineering 2009-05, Vol.33 (3), p.287-297 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | 3 |
container_start_page | 287 |
container_title | Wind engineering |
container_volume | 33 |
creator | Rivas, Rajai Aghabi Clausen, Jens Hansen, Kurt S. Jensen, Leo E. |
description | The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes. |
doi_str_mv | 10.1260/0309-524X.33.3.287 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36349097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43856972</jstor_id><sage_id>10.1260_0309-524X.33.3.287</sage_id><sourcerecordid>43856972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</originalsourceid><addsrcrecordid>eNqNkV1r2zAUhsVYYVm3PzAY6Gp3TvVpWZehrGshkEBTlouBkKWj1MG2Mske9N_XJqWX7a4OHJ7nHHhfhL5RsqSsJFeEE11IJvZLzpd8ySr1AS0YEVUhCNt_RItX4BP6nPORECooFQv05z62_5r-gIdHwLsx1U0PeBtzMzSxn_fbFOsWOhxiwmubDoA3IeTHmAD_bnqPb2zqMq6f8H3Tja0dwONV34NtJ_kLugi2zfD1ZV6ih5ufu-vbYr35dXe9WhdOSDUUVnoodQ2MeiE1OKgDVU4ysKqupKceKNVauloAdxKcZqp0VHuveHA-BH6JfpzvnlL8O0IeTNdkB21re4hjNrzkQhOt3gXZFCZT8r9AVvFyBtkZdCnmnCCYU2o6m54MJWauxszJmzl5w7nhZqpmkq7OUrYHMMc4pn6K523j-9k45iGm1x-CV7LUivFnTDma1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21228367</pqid></control><display><type>article</type><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><creator>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</creator><creatorcontrib>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</creatorcontrib><description>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</description><identifier>ISSN: 0309-524X</identifier><identifier>EISSN: 2048-402X</identifier><identifier>DOI: 10.1260/0309-524X.33.3.287</identifier><language>eng</language><publisher>London, England: Multi-Science Publishing Company</publisher><subject>Algorithms ; Indexing in process ; Modeling ; Q1 ; Sensitivity analysis ; Simulated annealing ; Turbines ; Wind direction ; Wind farms ; Wind power ; Wind turbines ; Wind velocity</subject><ispartof>Wind engineering, 2009-05, Vol.33 (3), p.287-297</ispartof><rights>2009 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</citedby><cites>FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43856972$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43856972$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,21800,27905,27906,43602,43603,57998,58231</link.rule.ids></links><search><creatorcontrib>Rivas, Rajai Aghabi</creatorcontrib><creatorcontrib>Clausen, Jens</creatorcontrib><creatorcontrib>Hansen, Kurt S.</creatorcontrib><creatorcontrib>Jensen, Leo E.</creatorcontrib><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><title>Wind engineering</title><description>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</description><subject>Algorithms</subject><subject>Indexing in process</subject><subject>Modeling</subject><subject>Q1</subject><subject>Sensitivity analysis</subject><subject>Simulated annealing</subject><subject>Turbines</subject><subject>Wind direction</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><subject>Wind velocity</subject><issn>0309-524X</issn><issn>2048-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkV1r2zAUhsVYYVm3PzAY6Gp3TvVpWZehrGshkEBTlouBkKWj1MG2Mske9N_XJqWX7a4OHJ7nHHhfhL5RsqSsJFeEE11IJvZLzpd8ySr1AS0YEVUhCNt_RItX4BP6nPORECooFQv05z62_5r-gIdHwLsx1U0PeBtzMzSxn_fbFOsWOhxiwmubDoA3IeTHmAD_bnqPb2zqMq6f8H3Tja0dwONV34NtJ_kLugi2zfD1ZV6ih5ufu-vbYr35dXe9WhdOSDUUVnoodQ2MeiE1OKgDVU4ysKqupKceKNVauloAdxKcZqp0VHuveHA-BH6JfpzvnlL8O0IeTNdkB21re4hjNrzkQhOt3gXZFCZT8r9AVvFyBtkZdCnmnCCYU2o6m54MJWauxszJmzl5w7nhZqpmkq7OUrYHMMc4pn6K523j-9k45iGm1x-CV7LUivFnTDma1g</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Rivas, Rajai Aghabi</creator><creator>Clausen, Jens</creator><creator>Hansen, Kurt S.</creator><creator>Jensen, Leo E.</creator><general>Multi-Science Publishing Company</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090501</creationdate><title>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</title><author>Rivas, Rajai Aghabi ; Clausen, Jens ; Hansen, Kurt S. ; Jensen, Leo E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-a5de69be21d459ecebf17c52ea7b85d1de11995cb4e3c5ec9276c19dd73fcdff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Indexing in process</topic><topic>Modeling</topic><topic>Q1</topic><topic>Sensitivity analysis</topic><topic>Simulated annealing</topic><topic>Turbines</topic><topic>Wind direction</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivas, Rajai Aghabi</creatorcontrib><creatorcontrib>Clausen, Jens</creatorcontrib><creatorcontrib>Hansen, Kurt S.</creatorcontrib><creatorcontrib>Jensen, Leo E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wind engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivas, Rajai Aghabi</au><au>Clausen, Jens</au><au>Hansen, Kurt S.</au><au>Jensen, Leo E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing</atitle><jtitle>Wind engineering</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>33</volume><issue>3</issue><spage>287</spage><epage>297</epage><pages>287-297</pages><issn>0309-524X</issn><eissn>2048-402X</eissn><abstract>The current paper is concerned with determining the optimal layout of the turbines inside large offshore wind farms by means of an optimization algorithm. We call this the Turbine Positioning Problem. To achieve this goal a simulated annealing algorithm has been devised, where three types of local search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method represents an effective strategy for the wind turbine positioning problem. The findings enable the comparison of the optimized and the grid layouts and the study of the wake differences between these configurations. It is seen that for very large offshore wind farms the difference in wake losses is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes.</abstract><cop>London, England</cop><pub>Multi-Science Publishing Company</pub><doi>10.1260/0309-524X.33.3.287</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-524X |
ispartof | Wind engineering, 2009-05, Vol.33 (3), p.287-297 |
issn | 0309-524X 2048-402X |
language | eng |
recordid | cdi_proquest_miscellaneous_36349097 |
source | SAGE Complete A-Z List; Jstor Complete Legacy |
subjects | Algorithms Indexing in process Modeling Q1 Sensitivity analysis Simulated annealing Turbines Wind direction Wind farms Wind power Wind turbines Wind velocity |
title | Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Turbine%20Positioning%20Problem%20for%20Large%20Offshore%20Wind%20Farms%20by%20Simulated%20Annealing&rft.jtitle=Wind%20engineering&rft.au=Rivas,%20Rajai%20Aghabi&rft.date=2009-05-01&rft.volume=33&rft.issue=3&rft.spage=287&rft.epage=297&rft.pages=287-297&rft.issn=0309-524X&rft.eissn=2048-402X&rft_id=info:doi/10.1260/0309-524X.33.3.287&rft_dat=%3Cjstor_proqu%3E43856972%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21228367&rft_id=info:pmid/&rft_jstor_id=43856972&rft_sage_id=10.1260_0309-524X.33.3.287&rfr_iscdi=true |