Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition
Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating was successfully fabricated by a modified electrochemical deposition technique. F − ions, nanoscaled TiO 2 particles and 6% H 2 O 2 was added into the electrolyte, and ultrasonication was also performed to prepare this nanocomposite c...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2009-05, Vol.20 (5), p.1047-1055 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1055 |
---|---|
container_issue | 5 |
container_start_page | 1047 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 20 |
creator | Wang, Jian Chao, Yonglie Wan, Qianbing Yan, Kangping Meng, Yukun |
description | Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating was successfully fabricated by a modified electrochemical deposition technique. F
−
ions, nanoscaled TiO
2
particles and 6% H
2
O
2
was added into the electrolyte, and ultrasonication was also performed to prepare this nanocomposite coating. The microstructure, phase composition, dissolution rate, bonding strength and in vitro cellular responses of the composite coating were investigated. The results show that the composite coating was uniform and dense owing to the effects of H
2
O
2
and ultrasonication. The thickness of the composite coating was ~5 μm and scanning electron microscopy revealed that nanoscaled TiO
2
particles were imbedded uniformly between FHA crystals. The addition of F
−
and TiO
2
reduced the crystallite size and increased the crystallinity of HA in FHA/TiO
2
composite coating. In addition, the composite coating shows higher bonding strength and lower dissolution rate than pure HA coating, and the in vitro bioactivity of FHA/TiO
2
composite coating was not affected as compared with pure HA coating. |
doi_str_mv | 10.1007/s10856-008-3673-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36343676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895553281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-1efb4e1991d55854e7dd2b0b9119efb4bf903394e499d9dbfc80a53ef517e71c3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaLbbfoBeiukhNzczlmRZxxKStBDopTkLWRonCra1lWzIfvtqswuBQulFf3i_eSPNY-wTwlcEUJcZoZNtDdDVvFW8xjdsg7IcRMe7t2wDWqpaSA7n7H3OTwAgtJTv2DlqRAkaNmy9GdeYgrcL-epx71N83tudXcJCl2Wxc1inyof4HDxVs52ji9Mu5iJXLhZsfqgG26fgXgz6fWWrKfowhHKjkdySonukqehj5emlMsT5Azsb7Jjp42nfsvub619X3-u7n7c_rr7d1U5otdRIQy8ItUYvZScFKe-bHvryen2Q-kED51qQ0Npr3w-uAys5DRIVKXR8yy6OvrsUf6-UFzOF7Ggc7UxxzYa3XJTJtf8FG-Rc6TLjLfvyF_gU1zSXT5imwaZVjcQC4RFyKeacaDC7FCab9gbBHJIzx-RMSc4ckjOHms8n47WfyL9WnKIqQHMEcpHmB0qvnf_t-gd7AqZy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221267251</pqid></control><display><type>article</type><title>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Jian ; Chao, Yonglie ; Wan, Qianbing ; Yan, Kangping ; Meng, Yukun</creator><creatorcontrib>Wang, Jian ; Chao, Yonglie ; Wan, Qianbing ; Yan, Kangping ; Meng, Yukun</creatorcontrib><description>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating was successfully fabricated by a modified electrochemical deposition technique. F
−
ions, nanoscaled TiO
2
particles and 6% H
2
O
2
was added into the electrolyte, and ultrasonication was also performed to prepare this nanocomposite coating. The microstructure, phase composition, dissolution rate, bonding strength and in vitro cellular responses of the composite coating were investigated. The results show that the composite coating was uniform and dense owing to the effects of H
2
O
2
and ultrasonication. The thickness of the composite coating was ~5 μm and scanning electron microscopy revealed that nanoscaled TiO
2
particles were imbedded uniformly between FHA crystals. The addition of F
−
and TiO
2
reduced the crystallite size and increased the crystallinity of HA in FHA/TiO
2
composite coating. In addition, the composite coating shows higher bonding strength and lower dissolution rate than pure HA coating, and the in vitro bioactivity of FHA/TiO
2
composite coating was not affected as compared with pure HA coating.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-008-3673-1</identifier><identifier>PMID: 19115090</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3T3 Cells ; Alkaline Phosphatase - metabolism ; Animals ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell Proliferation ; Ceramics ; Chemistry and Materials Science ; Coated Materials, Biocompatible - chemistry ; Composite materials ; Composites ; Electrochemical Techniques ; Fluoridation ; Glass ; Hydroxyapatites - isolation & purification ; Materials Science ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Natural Materials ; Particle Size ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Spectroscopy, Fourier Transform Infrared ; Stress, Mechanical ; Surfaces and Interfaces ; Thin film coatings ; Thin Films ; Titanium - isolation & purification</subject><ispartof>Journal of materials science. Materials in medicine, 2009-05, Vol.20 (5), p.1047-1055</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-1efb4e1991d55854e7dd2b0b9119efb4bf903394e499d9dbfc80a53ef517e71c3</citedby><cites>FETCH-LOGICAL-c497t-1efb4e1991d55854e7dd2b0b9119efb4bf903394e499d9dbfc80a53ef517e71c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-008-3673-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-008-3673-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19115090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Chao, Yonglie</creatorcontrib><creatorcontrib>Wan, Qianbing</creatorcontrib><creatorcontrib>Yan, Kangping</creatorcontrib><creatorcontrib>Meng, Yukun</creatorcontrib><title>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating was successfully fabricated by a modified electrochemical deposition technique. F
−
ions, nanoscaled TiO
2
particles and 6% H
2
O
2
was added into the electrolyte, and ultrasonication was also performed to prepare this nanocomposite coating. The microstructure, phase composition, dissolution rate, bonding strength and in vitro cellular responses of the composite coating were investigated. The results show that the composite coating was uniform and dense owing to the effects of H
2
O
2
and ultrasonication. The thickness of the composite coating was ~5 μm and scanning electron microscopy revealed that nanoscaled TiO
2
particles were imbedded uniformly between FHA crystals. The addition of F
−
and TiO
2
reduced the crystallite size and increased the crystallinity of HA in FHA/TiO
2
composite coating. In addition, the composite coating shows higher bonding strength and lower dissolution rate than pure HA coating, and the in vitro bioactivity of FHA/TiO
2
composite coating was not affected as compared with pure HA coating.</description><subject>3T3 Cells</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell Proliferation</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Electrochemical Techniques</subject><subject>Fluoridation</subject><subject>Glass</subject><subject>Hydroxyapatites - isolation & purification</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Natural Materials</subject><subject>Particle Size</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stress, Mechanical</subject><subject>Surfaces and Interfaces</subject><subject>Thin film coatings</subject><subject>Thin Films</subject><subject>Titanium - isolation & purification</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9r3DAQxUVpaLbbfoBeiukhNzczlmRZxxKStBDopTkLWRonCra1lWzIfvtqswuBQulFf3i_eSPNY-wTwlcEUJcZoZNtDdDVvFW8xjdsg7IcRMe7t2wDWqpaSA7n7H3OTwAgtJTv2DlqRAkaNmy9GdeYgrcL-epx71N83tudXcJCl2Wxc1inyof4HDxVs52ji9Mu5iJXLhZsfqgG26fgXgz6fWWrKfowhHKjkdySonukqehj5emlMsT5Azsb7Jjp42nfsvub619X3-u7n7c_rr7d1U5otdRIQy8ItUYvZScFKe-bHvryen2Q-kED51qQ0Npr3w-uAys5DRIVKXR8yy6OvrsUf6-UFzOF7Ggc7UxxzYa3XJTJtf8FG-Rc6TLjLfvyF_gU1zSXT5imwaZVjcQC4RFyKeacaDC7FCab9gbBHJIzx-RMSc4ckjOHms8n47WfyL9WnKIqQHMEcpHmB0qvnf_t-gd7AqZy</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Wang, Jian</creator><creator>Chao, Yonglie</creator><creator>Wan, Qianbing</creator><creator>Yan, Kangping</creator><creator>Meng, Yukun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20090501</creationdate><title>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition</title><author>Wang, Jian ; Chao, Yonglie ; Wan, Qianbing ; Yan, Kangping ; Meng, Yukun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-1efb4e1991d55854e7dd2b0b9119efb4bf903394e499d9dbfc80a53ef517e71c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3T3 Cells</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell Proliferation</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Electrochemical Techniques</topic><topic>Fluoridation</topic><topic>Glass</topic><topic>Hydroxyapatites - isolation & purification</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Natural Materials</topic><topic>Particle Size</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stress, Mechanical</topic><topic>Surfaces and Interfaces</topic><topic>Thin film coatings</topic><topic>Thin Films</topic><topic>Titanium - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Chao, Yonglie</creatorcontrib><creatorcontrib>Wan, Qianbing</creatorcontrib><creatorcontrib>Yan, Kangping</creatorcontrib><creatorcontrib>Meng, Yukun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Chao, Yonglie</au><au>Wan, Qianbing</au><au>Yan, Kangping</au><au>Meng, Yukun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>20</volume><issue>5</issue><spage>1047</spage><epage>1055</epage><pages>1047-1055</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating was successfully fabricated by a modified electrochemical deposition technique. F
−
ions, nanoscaled TiO
2
particles and 6% H
2
O
2
was added into the electrolyte, and ultrasonication was also performed to prepare this nanocomposite coating. The microstructure, phase composition, dissolution rate, bonding strength and in vitro cellular responses of the composite coating were investigated. The results show that the composite coating was uniform and dense owing to the effects of H
2
O
2
and ultrasonication. The thickness of the composite coating was ~5 μm and scanning electron microscopy revealed that nanoscaled TiO
2
particles were imbedded uniformly between FHA crystals. The addition of F
−
and TiO
2
reduced the crystallite size and increased the crystallinity of HA in FHA/TiO
2
composite coating. In addition, the composite coating shows higher bonding strength and lower dissolution rate than pure HA coating, and the in vitro bioactivity of FHA/TiO
2
composite coating was not affected as compared with pure HA coating.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>19115090</pmid><doi>10.1007/s10856-008-3673-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2009-05, Vol.20 (5), p.1047-1055 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_36343676 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 3T3 Cells Alkaline Phosphatase - metabolism Animals Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Cell Proliferation Ceramics Chemistry and Materials Science Coated Materials, Biocompatible - chemistry Composite materials Composites Electrochemical Techniques Fluoridation Glass Hydroxyapatites - isolation & purification Materials Science Materials Testing Mice Microscopy, Electron, Scanning Nanocomposites - chemistry Nanocomposites - ultrastructure Natural Materials Particle Size Polymer Sciences Regenerative Medicine/Tissue Engineering Spectroscopy, Fourier Transform Infrared Stress, Mechanical Surfaces and Interfaces Thin film coatings Thin Films Titanium - isolation & purification |
title | Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluoridated%20hydroxyapatite/titanium%20dioxide%20nanocomposite%20coating%20fabricated%20by%20a%20modified%20electrochemical%20deposition&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Wang,%20Jian&rft.date=2009-05-01&rft.volume=20&rft.issue=5&rft.spage=1047&rft.epage=1055&rft.pages=1047-1055&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-008-3673-1&rft_dat=%3Cproquest_cross%3E1895553281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221267251&rft_id=info:pmid/19115090&rfr_iscdi=true |