Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems

In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2010-01, Vol.18 (1), p.152-163
Hauptverfasser: Benosman, M., Lum, K.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 152
container_title IEEE transactions on control systems technology
container_volume 18
creator Benosman, M.
Lum, K.-Y.
description In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.
doi_str_mv 10.1109/TCST.2008.2009641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36342186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908917</ieee_id><sourcerecordid>36342186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8aUv6lNnPpo0fRzFqTBUWH0OWXoDla7RJBX2703Z2Ms9F-45h3sOQrcELwjB1VNTb5oFxVhOoxIFOUMzwrnMsRT8PO1YsFxwJi7RVQjfGJOC03KGVp86hO4PsqWJo47Oh8dspcc-5o3rweshZrUbond9Zp3PltZ2A2TvbugTap9t9iHCLlyjC6v7ADdHnKOv1XNTv-brj5e3ernODaMi5sbQkrYVNtpwjiUUBd5qKI1l0BJpJTbtVqY8jFEiKTewNaTlWvIWi1KWwObo4eD7493vCCGqXRcM9L0ewI1BMcGKJBWJSA5E410IHqz68d1O-70iWE2NqakxNTWmjo0lzf3RXAeje5vSmy6chJSmt4SYeHcHXgcAp3NRYVmRkv0DSUh0Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36342186</pqid></control><display><type>article</type><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Benosman, M. ; Lum, K.-Y.</creator><creatorcontrib>Benosman, M. ; Lum, K.-Y.</creatorcontrib><description>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2008.2009641</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuator faults ; Actuators ; Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Exact sciences and technology ; Fault detection ; Fault tolerant systems ; Helicopters ; Lyapunov method ; Lyapunov-based control ; Nonlinear control systems ; Nonlinear systems ; passive fault-tolerant control (FTC) ; Phase estimation ; Stability</subject><ispartof>IEEE transactions on control systems technology, 2010-01, Vol.18 (1), p.152-163</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</citedby><cites>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22332661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benosman, M.</creatorcontrib><creatorcontrib>Lum, K.-Y.</creatorcontrib><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</description><subject>Actuator faults</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fault detection</subject><subject>Fault tolerant systems</subject><subject>Helicopters</subject><subject>Lyapunov method</subject><subject>Lyapunov-based control</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>passive fault-tolerant control (FTC)</subject><subject>Phase estimation</subject><subject>Stability</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUDaLgnP4A8aUv6lNnPpo0fRzFqTBUWH0OWXoDla7RJBX2703Z2Ms9F-45h3sOQrcELwjB1VNTb5oFxVhOoxIFOUMzwrnMsRT8PO1YsFxwJi7RVQjfGJOC03KGVp86hO4PsqWJo47Oh8dspcc-5o3rweshZrUbond9Zp3PltZ2A2TvbugTap9t9iHCLlyjC6v7ADdHnKOv1XNTv-brj5e3ernODaMi5sbQkrYVNtpwjiUUBd5qKI1l0BJpJTbtVqY8jFEiKTewNaTlWvIWi1KWwObo4eD7493vCCGqXRcM9L0ewI1BMcGKJBWJSA5E410IHqz68d1O-70iWE2NqakxNTWmjo0lzf3RXAeje5vSmy6chJSmt4SYeHcHXgcAp3NRYVmRkv0DSUh0Uw</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Benosman, M.</creator><creator>Lum, K.-Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201001</creationdate><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><author>Benosman, M. ; Lum, K.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuator faults</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fault detection</topic><topic>Fault tolerant systems</topic><topic>Helicopters</topic><topic>Lyapunov method</topic><topic>Lyapunov-based control</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>passive fault-tolerant control (FTC)</topic><topic>Phase estimation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benosman, M.</creatorcontrib><creatorcontrib>Lum, K.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benosman, M.</au><au>Lum, K.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2010-01</date><risdate>2010</risdate><volume>18</volume><issue>1</issue><spage>152</spage><epage>163</epage><pages>152-163</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2008.2009641</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2010-01, Vol.18 (1), p.152-163
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_miscellaneous_36342186
source IEEE Electronic Library (IEL)
subjects Actuator faults
Actuators
Applied sciences
Computer science
control theory
systems
Control system analysis
Control systems
Control theory. Systems
Exact sciences and technology
Fault detection
Fault tolerant systems
Helicopters
Lyapunov method
Lyapunov-based control
Nonlinear control systems
Nonlinear systems
passive fault-tolerant control (FTC)
Phase estimation
Stability
title Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20Actuators'%20Fault-Tolerant%20Control%20for%20Affine%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Benosman,%20M.&rft.date=2010-01&rft.volume=18&rft.issue=1&rft.spage=152&rft.epage=163&rft.pages=152-163&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2008.2009641&rft_dat=%3Cproquest_RIE%3E36342186%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36342186&rft_id=info:pmid/&rft_ieee_id=4908917&rfr_iscdi=true