Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems
In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uni...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2010-01, Vol.18 (1), p.152-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 1 |
container_start_page | 152 |
container_title | IEEE transactions on control systems technology |
container_volume | 18 |
creator | Benosman, M. Lum, K.-Y. |
description | In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example. |
doi_str_mv | 10.1109/TCST.2008.2009641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36342186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908917</ieee_id><sourcerecordid>36342186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8aUv6lNnPpo0fRzFqTBUWH0OWXoDla7RJBX2703Z2Ms9F-45h3sOQrcELwjB1VNTb5oFxVhOoxIFOUMzwrnMsRT8PO1YsFxwJi7RVQjfGJOC03KGVp86hO4PsqWJo47Oh8dspcc-5o3rweshZrUbond9Zp3PltZ2A2TvbugTap9t9iHCLlyjC6v7ADdHnKOv1XNTv-brj5e3ernODaMi5sbQkrYVNtpwjiUUBd5qKI1l0BJpJTbtVqY8jFEiKTewNaTlWvIWi1KWwObo4eD7493vCCGqXRcM9L0ewI1BMcGKJBWJSA5E410IHqz68d1O-70iWE2NqakxNTWmjo0lzf3RXAeje5vSmy6chJSmt4SYeHcHXgcAp3NRYVmRkv0DSUh0Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36342186</pqid></control><display><type>article</type><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Benosman, M. ; Lum, K.-Y.</creator><creatorcontrib>Benosman, M. ; Lum, K.-Y.</creatorcontrib><description>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2008.2009641</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuator faults ; Actuators ; Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Exact sciences and technology ; Fault detection ; Fault tolerant systems ; Helicopters ; Lyapunov method ; Lyapunov-based control ; Nonlinear control systems ; Nonlinear systems ; passive fault-tolerant control (FTC) ; Phase estimation ; Stability</subject><ispartof>IEEE transactions on control systems technology, 2010-01, Vol.18 (1), p.152-163</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</citedby><cites>FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22332661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benosman, M.</creatorcontrib><creatorcontrib>Lum, K.-Y.</creatorcontrib><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</description><subject>Actuator faults</subject><subject>Actuators</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fault detection</subject><subject>Fault tolerant systems</subject><subject>Helicopters</subject><subject>Lyapunov method</subject><subject>Lyapunov-based control</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>passive fault-tolerant control (FTC)</subject><subject>Phase estimation</subject><subject>Stability</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUDaLgnP4A8aUv6lNnPpo0fRzFqTBUWH0OWXoDla7RJBX2703Z2Ms9F-45h3sOQrcELwjB1VNTb5oFxVhOoxIFOUMzwrnMsRT8PO1YsFxwJi7RVQjfGJOC03KGVp86hO4PsqWJo47Oh8dspcc-5o3rweshZrUbond9Zp3PltZ2A2TvbugTap9t9iHCLlyjC6v7ADdHnKOv1XNTv-brj5e3ernODaMi5sbQkrYVNtpwjiUUBd5qKI1l0BJpJTbtVqY8jFEiKTewNaTlWvIWi1KWwObo4eD7493vCCGqXRcM9L0ewI1BMcGKJBWJSA5E410IHqz68d1O-70iWE2NqakxNTWmjo0lzf3RXAeje5vSmy6chJSmt4SYeHcHXgcAp3NRYVmRkv0DSUh0Uw</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Benosman, M.</creator><creator>Lum, K.-Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201001</creationdate><title>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</title><author>Benosman, M. ; Lum, K.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-cc272d90cac5508e440bae7cf3ed18f80cdb81103321825cebc1d5a85d06787e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actuator faults</topic><topic>Actuators</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fault detection</topic><topic>Fault tolerant systems</topic><topic>Helicopters</topic><topic>Lyapunov method</topic><topic>Lyapunov-based control</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>passive fault-tolerant control (FTC)</topic><topic>Phase estimation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benosman, M.</creatorcontrib><creatorcontrib>Lum, K.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benosman, M.</au><au>Lum, K.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2010-01</date><risdate>2010</risdate><volume>18</volume><issue>1</issue><spage>152</spage><epage>163</epage><pages>152-163</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, the problem of passive fault-tolerant control (FTC) for nonlinear affine systems with actuator faults is considered. Two types of faults, additive and loss-of-effectiveness faults, are treated. In each case, a Lyapunov-based feedback controller is proposed, which ensures the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal system is locally uniformly asymptotically (exponentially) stable. The effectiveness of the FT controllers is shown on the autonomous helicopter numerical example.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2008.2009641</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2010-01, Vol.18 (1), p.152-163 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_miscellaneous_36342186 |
source | IEEE Electronic Library (IEL) |
subjects | Actuator faults Actuators Applied sciences Computer science control theory systems Control system analysis Control systems Control theory. Systems Exact sciences and technology Fault detection Fault tolerant systems Helicopters Lyapunov method Lyapunov-based control Nonlinear control systems Nonlinear systems passive fault-tolerant control (FTC) Phase estimation Stability |
title | Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20Actuators'%20Fault-Tolerant%20Control%20for%20Affine%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Benosman,%20M.&rft.date=2010-01&rft.volume=18&rft.issue=1&rft.spage=152&rft.epage=163&rft.pages=152-163&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2008.2009641&rft_dat=%3Cproquest_RIE%3E36342186%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36342186&rft_id=info:pmid/&rft_ieee_id=4908917&rfr_iscdi=true |