Uniformly Diophantine numbers in a fixed real quadratic field

The field $\mathbb {Q}(\sqrt {5})$ contains the infinite sequence of uniformly bounded continued fractions $[\overline {1,4,2,3}], [\overline {1,1,4,2,1,3}], [\overline {1,1,1,4,2,1,1,3}], \ldots ,$ and similar patterns can be found in $\mathbb {Q}(\sqrt {d})$ for any d>0. This paper studies the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2009-07, Vol.145 (4), p.827-844
1. Verfasser: McMullen, Curtis T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The field $\mathbb {Q}(\sqrt {5})$ contains the infinite sequence of uniformly bounded continued fractions $[\overline {1,4,2,3}], [\overline {1,1,4,2,1,3}], [\overline {1,1,1,4,2,1,1,3}], \ldots ,$ and similar patterns can be found in $\mathbb {Q}(\sqrt {d})$ for any d>0. This paper studies the broader structure underlying these patterns, and develops related results and conjectures for closed geodesics on arithmetic manifolds, packing constants of ideals, class numbers and heights.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X09004102