Uniformly Diophantine numbers in a fixed real quadratic field
The field $\mathbb {Q}(\sqrt {5})$ contains the infinite sequence of uniformly bounded continued fractions $[\overline {1,4,2,3}], [\overline {1,1,4,2,1,3}], [\overline {1,1,1,4,2,1,1,3}], \ldots ,$ and similar patterns can be found in $\mathbb {Q}(\sqrt {d})$ for any d>0. This paper studies the...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2009-07, Vol.145 (4), p.827-844 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The field $\mathbb {Q}(\sqrt {5})$ contains the infinite sequence of uniformly bounded continued fractions $[\overline {1,4,2,3}], [\overline {1,1,4,2,1,3}], [\overline {1,1,1,4,2,1,1,3}], \ldots ,$ and similar patterns can be found in $\mathbb {Q}(\sqrt {d})$ for any d>0. This paper studies the broader structure underlying these patterns, and develops related results and conjectures for closed geodesics on arithmetic manifolds, packing constants of ideals, class numbers and heights. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X09004102 |