Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins
Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2009-11, Vol.29 (16), p.3299-3308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3308 |
---|---|
container_issue | 16 |
container_start_page | 3299 |
container_title | Applied thermal engineering |
container_volume | 29 |
creator | Tsuzuki, Nobuyoshi Utamura, Motoaki Ngo, Tri Lam |
description | Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2
°C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2
°C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers. |
doi_str_mv | 10.1016/j.applthermaleng.2009.05.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431109001434</els_id><sourcerecordid>36338306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</originalsourceid><addsrcrecordid>eNqNkEtv1TAQhbMoEn3wH7yg7JLaceKbSGyqqg-kqiyAtTVxxo2vHCf1OBT-Pb66FRI7VnNGOjNH5yuKj4JXggt1ta9gXX2aMM7gMTxXNed9xduK8-akOBWy7ctGCvG-OCPacy7qbtecFuZpI0KfWNjmASMzS4zoIbklELNLZMBmZ-JiJggBPZsQEsNfh_U526clsVdIWdGW410Wry5N7FtJE6w4MusCXRTvLHjCD2_zvPhxd_v95qF8_Hr_5eb6sTSNbFNZD7W0Sg4AO7Awqnqs21FwGK1qBqWgFx2voeeg2l1nx1YJ0Rgz9B1Aq5BLeV58Ov5d4_KyISU9OzLoPQRcNtJSSdlJrrLx89GYixFFtHqNbob4WwuuDzT1Xv9LUx9oat7qTDOfX77lABnwNkIwjv7-qEXPhegOMXdHH-bSPzMbTcZhMDi6iCbpcXH_F_gHTYuX9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36338306</pqid></control><display><type>article</type><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</creator><creatorcontrib>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</creatorcontrib><description>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2
°C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2
°C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2009.05.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Microchannels ; Nusselt number ; Pseudo-critical point ; Rapid property changes ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2009-11, Vol.29 (16), p.3299-3308</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</citedby><cites>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2009.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21901186$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuzuki, Nobuyoshi</creatorcontrib><creatorcontrib>Utamura, Motoaki</creatorcontrib><creatorcontrib>Ngo, Tri Lam</creatorcontrib><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><title>Applied thermal engineering</title><description>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2
°C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2
°C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Microchannels</subject><subject>Nusselt number</subject><subject>Pseudo-critical point</subject><subject>Rapid property changes</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1TAQhbMoEn3wH7yg7JLaceKbSGyqqg-kqiyAtTVxxo2vHCf1OBT-Pb66FRI7VnNGOjNH5yuKj4JXggt1ta9gXX2aMM7gMTxXNed9xduK8-akOBWy7ctGCvG-OCPacy7qbtecFuZpI0KfWNjmASMzS4zoIbklELNLZMBmZ-JiJggBPZsQEsNfh_U526clsVdIWdGW410Wry5N7FtJE6w4MusCXRTvLHjCD2_zvPhxd_v95qF8_Hr_5eb6sTSNbFNZD7W0Sg4AO7Awqnqs21FwGK1qBqWgFx2voeeg2l1nx1YJ0Rgz9B1Aq5BLeV58Ov5d4_KyISU9OzLoPQRcNtJSSdlJrrLx89GYixFFtHqNbob4WwuuDzT1Xv9LUx9oat7qTDOfX77lABnwNkIwjv7-qEXPhegOMXdHH-bSPzMbTcZhMDi6iCbpcXH_F_gHTYuX9Q</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Tsuzuki, Nobuyoshi</creator><creator>Utamura, Motoaki</creator><creator>Ngo, Tri Lam</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091101</creationdate><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><author>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Microchannels</topic><topic>Nusselt number</topic><topic>Pseudo-critical point</topic><topic>Rapid property changes</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuzuki, Nobuyoshi</creatorcontrib><creatorcontrib>Utamura, Motoaki</creatorcontrib><creatorcontrib>Ngo, Tri Lam</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuzuki, Nobuyoshi</au><au>Utamura, Motoaki</au><au>Ngo, Tri Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>29</volume><issue>16</issue><spage>3299</spage><epage>3308</epage><pages>3299-3308</pages><issn>1359-4311</issn><abstract>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2
°C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2
°C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2009.05.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2009-11, Vol.29 (16), p.3299-3308 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_36338306 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Computational fluid dynamics Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat exchanger Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Microchannels Nusselt number Pseudo-critical point Rapid property changes Theoretical studies. Data and constants. Metering |
title | Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nusselt%20number%20correlations%20for%20a%20microchannel%20heat%20exchanger%20hot%20water%20supplier%20with%20S-shaped%20fins&rft.jtitle=Applied%20thermal%20engineering&rft.au=Tsuzuki,%20Nobuyoshi&rft.date=2009-11-01&rft.volume=29&rft.issue=16&rft.spage=3299&rft.epage=3308&rft.pages=3299-3308&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2009.05.004&rft_dat=%3Cproquest_cross%3E36338306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36338306&rft_id=info:pmid/&rft_els_id=S1359431109001434&rfr_iscdi=true |