Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins

Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2009-11, Vol.29 (16), p.3299-3308
Hauptverfasser: Tsuzuki, Nobuyoshi, Utamura, Motoaki, Ngo, Tri Lam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3308
container_issue 16
container_start_page 3299
container_title Applied thermal engineering
container_volume 29
creator Tsuzuki, Nobuyoshi
Utamura, Motoaki
Ngo, Tri Lam
description Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2 °C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2 °C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.
doi_str_mv 10.1016/j.applthermaleng.2009.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431109001434</els_id><sourcerecordid>36338306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</originalsourceid><addsrcrecordid>eNqNkEtv1TAQhbMoEn3wH7yg7JLaceKbSGyqqg-kqiyAtTVxxo2vHCf1OBT-Pb66FRI7VnNGOjNH5yuKj4JXggt1ta9gXX2aMM7gMTxXNed9xduK8-akOBWy7ctGCvG-OCPacy7qbtecFuZpI0KfWNjmASMzS4zoIbklELNLZMBmZ-JiJggBPZsQEsNfh_U526clsVdIWdGW410Wry5N7FtJE6w4MusCXRTvLHjCD2_zvPhxd_v95qF8_Hr_5eb6sTSNbFNZD7W0Sg4AO7Awqnqs21FwGK1qBqWgFx2voeeg2l1nx1YJ0Rgz9B1Aq5BLeV58Ov5d4_KyISU9OzLoPQRcNtJSSdlJrrLx89GYixFFtHqNbob4WwuuDzT1Xv9LUx9oat7qTDOfX77lABnwNkIwjv7-qEXPhegOMXdHH-bSPzMbTcZhMDi6iCbpcXH_F_gHTYuX9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36338306</pqid></control><display><type>article</type><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</creator><creatorcontrib>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</creatorcontrib><description>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2 °C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2 °C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2009.05.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Microchannels ; Nusselt number ; Pseudo-critical point ; Rapid property changes ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2009-11, Vol.29 (16), p.3299-3308</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</citedby><cites>FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2009.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21901186$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuzuki, Nobuyoshi</creatorcontrib><creatorcontrib>Utamura, Motoaki</creatorcontrib><creatorcontrib>Ngo, Tri Lam</creatorcontrib><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><title>Applied thermal engineering</title><description>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2 °C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2 °C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Microchannels</subject><subject>Nusselt number</subject><subject>Pseudo-critical point</subject><subject>Rapid property changes</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1TAQhbMoEn3wH7yg7JLaceKbSGyqqg-kqiyAtTVxxo2vHCf1OBT-Pb66FRI7VnNGOjNH5yuKj4JXggt1ta9gXX2aMM7gMTxXNed9xduK8-akOBWy7ctGCvG-OCPacy7qbtecFuZpI0KfWNjmASMzS4zoIbklELNLZMBmZ-JiJggBPZsQEsNfh_U526clsVdIWdGW410Wry5N7FtJE6w4MusCXRTvLHjCD2_zvPhxd_v95qF8_Hr_5eb6sTSNbFNZD7W0Sg4AO7Awqnqs21FwGK1qBqWgFx2voeeg2l1nx1YJ0Rgz9B1Aq5BLeV58Ov5d4_KyISU9OzLoPQRcNtJSSdlJrrLx89GYixFFtHqNbob4WwuuDzT1Xv9LUx9oat7qTDOfX77lABnwNkIwjv7-qEXPhegOMXdHH-bSPzMbTcZhMDi6iCbpcXH_F_gHTYuX9Q</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Tsuzuki, Nobuyoshi</creator><creator>Utamura, Motoaki</creator><creator>Ngo, Tri Lam</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091101</creationdate><title>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</title><author>Tsuzuki, Nobuyoshi ; Utamura, Motoaki ; Ngo, Tri Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-2b23f63baa7afad62d25d10adf64b66a91802a90a6578fd56114ccb98aa56e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Microchannels</topic><topic>Nusselt number</topic><topic>Pseudo-critical point</topic><topic>Rapid property changes</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuzuki, Nobuyoshi</creatorcontrib><creatorcontrib>Utamura, Motoaki</creatorcontrib><creatorcontrib>Ngo, Tri Lam</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuzuki, Nobuyoshi</au><au>Utamura, Motoaki</au><au>Ngo, Tri Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>29</volume><issue>16</issue><spage>3299</spage><epage>3308</epage><pages>3299-3308</pages><issn>1359-4311</issn><abstract>Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2 °C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2 °C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2009.05.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2009-11, Vol.29 (16), p.3299-3308
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_36338306
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Computational fluid dynamics
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchanger
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Microchannels
Nusselt number
Pseudo-critical point
Rapid property changes
Theoretical studies. Data and constants. Metering
title Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nusselt%20number%20correlations%20for%20a%20microchannel%20heat%20exchanger%20hot%20water%20supplier%20with%20S-shaped%20fins&rft.jtitle=Applied%20thermal%20engineering&rft.au=Tsuzuki,%20Nobuyoshi&rft.date=2009-11-01&rft.volume=29&rft.issue=16&rft.spage=3299&rft.epage=3308&rft.pages=3299-3308&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2009.05.004&rft_dat=%3Cproquest_cross%3E36338306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36338306&rft_id=info:pmid/&rft_els_id=S1359431109001434&rfr_iscdi=true