Field validation of the ASTER Temperature–Emissivity Separation algorithm
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard prod...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2009-11, Vol.113 (11), p.2328-2344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2344 |
---|---|
container_issue | 11 |
container_start_page | 2328 |
container_title | Remote sensing of environment |
container_volume | 113 |
creator | Sabol, Donald E. Gillespie, Alan R. Abbott, Elsa Yamada, Gail |
description | The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5
K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated. |
doi_str_mv | 10.1016/j.rse.2009.06.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425709001898</els_id><sourcerecordid>308424440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</originalsourceid><addsrcrecordid>eNqFkc9O20AQxlcVlRpoH6A3X0Bc7M7sH68tTgiFFoFUqaTn1bAel42cOOw6kbj1HfqGfZJuFMSRnmYOv2_mm_mE-IxQIWD9ZVnFxJUEaCuoK4DmnZhhY9sSLOgjMQNQutTS2A_iOKUlAJrG4kzcXgceumJHQ-hoCuO6GPtieuTi8n4x_1EseLXhSNM28t_ff-arkFLYhem5uOcNxYOAhl9jDNPj6qN439OQ-NNLPRE_r-eLq2_l3fevN1eXd6XXUk4lg0XjG0_UW_NQ21q3HkzujObOdw2YBy1rIlJkfCs96FZJs7-y94CK1Ik4O8zdxPFpy2ly2ZfnYaA1j9vkVK1Ug2j-C0qUGozEDJ6_CaK12XODrcooHlAfx5Qi924Tw4ris0Nwe5Nu6XIUbh-Fg9rlKLLm9GU8JU9DH2ntQ3oVSgmY84HMXRw4zt_bBY4u-cBrz12I7CfXjeGNLf8AYvyeFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777158193</pqid></control><display><type>article</type><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</creator><creatorcontrib>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</creatorcontrib><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5
K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2009.06.008</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied geophysics ; ASTER ; Atmospherics ; Compensation ; Earth sciences ; Earth, ocean, space ; Emissivity ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; Internal geophysics ; Separation ; Surface temperature ; Temperature-emissivity separation ; Validation ; Valleys</subject><ispartof>Remote sensing of environment, 2009-11, Vol.113 (11), p.2328-2344</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2009.06.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22010030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabol, Donald E.</creatorcontrib><creatorcontrib>Gillespie, Alan R.</creatorcontrib><creatorcontrib>Abbott, Elsa</creatorcontrib><creatorcontrib>Yamada, Gail</creatorcontrib><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><title>Remote sensing of environment</title><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5
K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</description><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>ASTER</subject><subject>Atmospherics</subject><subject>Compensation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Emissivity</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Internal geophysics</subject><subject>Separation</subject><subject>Surface temperature</subject><subject>Temperature-emissivity separation</subject><subject>Validation</subject><subject>Valleys</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O20AQxlcVlRpoH6A3X0Bc7M7sH68tTgiFFoFUqaTn1bAel42cOOw6kbj1HfqGfZJuFMSRnmYOv2_mm_mE-IxQIWD9ZVnFxJUEaCuoK4DmnZhhY9sSLOgjMQNQutTS2A_iOKUlAJrG4kzcXgceumJHQ-hoCuO6GPtieuTi8n4x_1EseLXhSNM28t_ff-arkFLYhem5uOcNxYOAhl9jDNPj6qN439OQ-NNLPRE_r-eLq2_l3fevN1eXd6XXUk4lg0XjG0_UW_NQ21q3HkzujObOdw2YBy1rIlJkfCs96FZJs7-y94CK1Ik4O8zdxPFpy2ly2ZfnYaA1j9vkVK1Ug2j-C0qUGozEDJ6_CaK12XODrcooHlAfx5Qi924Tw4ris0Nwe5Nu6XIUbh-Fg9rlKLLm9GU8JU9DH2ntQ3oVSgmY84HMXRw4zt_bBY4u-cBrz12I7CfXjeGNLf8AYvyeFg</recordid><startdate>20091116</startdate><enddate>20091116</enddate><creator>Sabol, Donald E.</creator><creator>Gillespie, Alan R.</creator><creator>Abbott, Elsa</creator><creator>Yamada, Gail</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>20091116</creationdate><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><author>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>ASTER</topic><topic>Atmospherics</topic><topic>Compensation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Emissivity</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Internal geophysics</topic><topic>Separation</topic><topic>Surface temperature</topic><topic>Temperature-emissivity separation</topic><topic>Validation</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabol, Donald E.</creatorcontrib><creatorcontrib>Gillespie, Alan R.</creatorcontrib><creatorcontrib>Abbott, Elsa</creatorcontrib><creatorcontrib>Yamada, Gail</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabol, Donald E.</au><au>Gillespie, Alan R.</au><au>Abbott, Elsa</au><au>Yamada, Gail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field validation of the ASTER Temperature–Emissivity Separation algorithm</atitle><jtitle>Remote sensing of environment</jtitle><date>2009-11-16</date><risdate>2009</risdate><volume>113</volume><issue>11</issue><spage>2328</spage><epage>2344</epage><pages>2328-2344</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5
K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2009.06.008</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2009-11, Vol.113 (11), p.2328-2344 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_36338115 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied geophysics ASTER Atmospherics Compensation Earth sciences Earth, ocean, space Emissivity Exact sciences and technology Hydrology Hydrology. Hydrogeology Internal geophysics Separation Surface temperature Temperature-emissivity separation Validation Valleys |
title | Field validation of the ASTER Temperature–Emissivity Separation algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20validation%20of%20the%20ASTER%20Temperature%E2%80%93Emissivity%20Separation%20algorithm&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Sabol,%20Donald%20E.&rft.date=2009-11-16&rft.volume=113&rft.issue=11&rft.spage=2328&rft.epage=2344&rft.pages=2328-2344&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2009.06.008&rft_dat=%3Cproquest_cross%3E308424440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777158193&rft_id=info:pmid/&rft_els_id=S0034425709001898&rfr_iscdi=true |