Field validation of the ASTER Temperature–Emissivity Separation algorithm

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2009-11, Vol.113 (11), p.2328-2344
Hauptverfasser: Sabol, Donald E., Gillespie, Alan R., Abbott, Elsa, Yamada, Gail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2344
container_issue 11
container_start_page 2328
container_title Remote sensing of environment
container_volume 113
creator Sabol, Donald E.
Gillespie, Alan R.
Abbott, Elsa
Yamada, Gail
description The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5 K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.
doi_str_mv 10.1016/j.rse.2009.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425709001898</els_id><sourcerecordid>308424440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</originalsourceid><addsrcrecordid>eNqFkc9O20AQxlcVlRpoH6A3X0Bc7M7sH68tTgiFFoFUqaTn1bAel42cOOw6kbj1HfqGfZJuFMSRnmYOv2_mm_mE-IxQIWD9ZVnFxJUEaCuoK4DmnZhhY9sSLOgjMQNQutTS2A_iOKUlAJrG4kzcXgceumJHQ-hoCuO6GPtieuTi8n4x_1EseLXhSNM28t_ff-arkFLYhem5uOcNxYOAhl9jDNPj6qN439OQ-NNLPRE_r-eLq2_l3fevN1eXd6XXUk4lg0XjG0_UW_NQ21q3HkzujObOdw2YBy1rIlJkfCs96FZJs7-y94CK1Ik4O8zdxPFpy2ly2ZfnYaA1j9vkVK1Ug2j-C0qUGozEDJ6_CaK12XODrcooHlAfx5Qi924Tw4ris0Nwe5Nu6XIUbh-Fg9rlKLLm9GU8JU9DH2ntQ3oVSgmY84HMXRw4zt_bBY4u-cBrz12I7CfXjeGNLf8AYvyeFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777158193</pqid></control><display><type>article</type><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</creator><creatorcontrib>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</creatorcontrib><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5 K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2009.06.008</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied geophysics ; ASTER ; Atmospherics ; Compensation ; Earth sciences ; Earth, ocean, space ; Emissivity ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; Internal geophysics ; Separation ; Surface temperature ; Temperature-emissivity separation ; Validation ; Valleys</subject><ispartof>Remote sensing of environment, 2009-11, Vol.113 (11), p.2328-2344</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2009.06.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22010030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabol, Donald E.</creatorcontrib><creatorcontrib>Gillespie, Alan R.</creatorcontrib><creatorcontrib>Abbott, Elsa</creatorcontrib><creatorcontrib>Yamada, Gail</creatorcontrib><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><title>Remote sensing of environment</title><description>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5 K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</description><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>ASTER</subject><subject>Atmospherics</subject><subject>Compensation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Emissivity</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Internal geophysics</subject><subject>Separation</subject><subject>Surface temperature</subject><subject>Temperature-emissivity separation</subject><subject>Validation</subject><subject>Valleys</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O20AQxlcVlRpoH6A3X0Bc7M7sH68tTgiFFoFUqaTn1bAel42cOOw6kbj1HfqGfZJuFMSRnmYOv2_mm_mE-IxQIWD9ZVnFxJUEaCuoK4DmnZhhY9sSLOgjMQNQutTS2A_iOKUlAJrG4kzcXgceumJHQ-hoCuO6GPtieuTi8n4x_1EseLXhSNM28t_ff-arkFLYhem5uOcNxYOAhl9jDNPj6qN439OQ-NNLPRE_r-eLq2_l3fevN1eXd6XXUk4lg0XjG0_UW_NQ21q3HkzujObOdw2YBy1rIlJkfCs96FZJs7-y94CK1Ik4O8zdxPFpy2ly2ZfnYaA1j9vkVK1Ug2j-C0qUGozEDJ6_CaK12XODrcooHlAfx5Qi924Tw4ris0Nwe5Nu6XIUbh-Fg9rlKLLm9GU8JU9DH2ntQ3oVSgmY84HMXRw4zt_bBY4u-cBrz12I7CfXjeGNLf8AYvyeFg</recordid><startdate>20091116</startdate><enddate>20091116</enddate><creator>Sabol, Donald E.</creator><creator>Gillespie, Alan R.</creator><creator>Abbott, Elsa</creator><creator>Yamada, Gail</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>20091116</creationdate><title>Field validation of the ASTER Temperature–Emissivity Separation algorithm</title><author>Sabol, Donald E. ; Gillespie, Alan R. ; Abbott, Elsa ; Yamada, Gail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-e0715c8caaf75b67649c055b654edcd805b426aaa3a5c92c0493251016fc013a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>ASTER</topic><topic>Atmospherics</topic><topic>Compensation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Emissivity</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Internal geophysics</topic><topic>Separation</topic><topic>Surface temperature</topic><topic>Temperature-emissivity separation</topic><topic>Validation</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabol, Donald E.</creatorcontrib><creatorcontrib>Gillespie, Alan R.</creatorcontrib><creatorcontrib>Abbott, Elsa</creatorcontrib><creatorcontrib>Yamada, Gail</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabol, Donald E.</au><au>Gillespie, Alan R.</au><au>Abbott, Elsa</au><au>Yamada, Gail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field validation of the ASTER Temperature–Emissivity Separation algorithm</atitle><jtitle>Remote sensing of environment</jtitle><date>2009-11-16</date><risdate>2009</risdate><volume>113</volume><issue>11</issue><spage>2328</spage><epage>2344</epage><pages>2328-2344</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature–Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5 K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawaiʻi demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2009.06.008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2009-11, Vol.113 (11), p.2328-2344
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_36338115
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied geophysics
ASTER
Atmospherics
Compensation
Earth sciences
Earth, ocean, space
Emissivity
Exact sciences and technology
Hydrology
Hydrology. Hydrogeology
Internal geophysics
Separation
Surface temperature
Temperature-emissivity separation
Validation
Valleys
title Field validation of the ASTER Temperature–Emissivity Separation algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20validation%20of%20the%20ASTER%20Temperature%E2%80%93Emissivity%20Separation%20algorithm&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Sabol,%20Donald%20E.&rft.date=2009-11-16&rft.volume=113&rft.issue=11&rft.spage=2328&rft.epage=2344&rft.pages=2328-2344&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2009.06.008&rft_dat=%3Cproquest_cross%3E308424440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777158193&rft_id=info:pmid/&rft_els_id=S0034425709001898&rfr_iscdi=true