On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems
This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longi...
Gespeichert in:
Veröffentlicht in: | Journal of Intelligent Material Systems and Structures 1995-03, Vol.6 (2), p.199-209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 2 |
container_start_page | 199 |
container_title | Journal of Intelligent Material Systems and Structures |
container_volume | 6 |
creator | Sirkis, James S. Lu, I-Ping |
description | This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively. |
doi_str_mv | 10.1177/1045389X9500600207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X9500600207</sage_id><sourcerecordid>36338052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmBTGug27R_oSYXSm5ORZMn2sSz5gi17SAK5BCNL442CLbka7yH_Plo25FJodZEOz7waZoriG4czzuv6nEOlZNM-tApAAwioPxQrriSUDZfNx_zOoDyIT8VnomcA3iiQq-JxG9hNWDDNT4aQ_Y4ORx92bIiJbefFWzOyS99jYrcYKCZiF1OPzqFjPrD74J1PaBcfQ4brOM2R_ILs9oUWnOhLcTKYkfDr231a3F9e3K2vy8326mb9a1PaCsRStlrIyig7gOt7rhqhh7pqbdu6ygnQqnJGt64XLfYyn8Y4pYUTFtByXdlGnhbfj7mRFt-RzS3YJxtDyK11PI8DeDY_j2ZO8c8eaekmTxbH0QSMe-qkzsmgxH-hqCsNQtcZiiO0KRIlHLo5-cmkl_xld1hL9_dactGPt3RDebhDMsF6eq-USghe68zOj4zMDrvnuE95wPSv4Fcv3pld</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27460267</pqid></control><display><type>article</type><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><source>SAGE Complete A-Z List</source><creator>Sirkis, James S. ; Lu, I-Ping</creator><creatorcontrib>Sirkis, James S. ; Lu, I-Ping</creatorcontrib><description>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X9500600207</identifier><language>eng</language><publisher>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA: SAGE Publications</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Imaging detectors and sensors ; INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Integrated optics. Optical fibers and wave guides ; INTERFACES ; MATERIALS SCIENCE ; MEASURING METHODS ; Optical and optoelectronic circuits ; Optical elements, devices, and systems ; OPTICAL EQUIPMENT ; Optics ; Physics ; REINFORCED PLASTICS ; RESIDUAL STRESSES ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Sensors, gyros ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Journal of Intelligent Material Systems and Structures, 1995-03, Vol.6 (2), p.199-209</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</citedby><cites>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X9500600207$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X9500600207$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3522176$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/102001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirkis, James S.</creatorcontrib><creatorcontrib>Lu, I-Ping</creatorcontrib><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><title>Journal of Intelligent Material Systems and Structures</title><description>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Imaging detectors and sensors</subject><subject>INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>INTERFACES</subject><subject>MATERIALS SCIENCE</subject><subject>MEASURING METHODS</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical elements, devices, and systems</subject><subject>OPTICAL EQUIPMENT</subject><subject>Optics</subject><subject>Physics</subject><subject>REINFORCED PLASTICS</subject><subject>RESIDUAL STRESSES</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Sensors, gyros</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0U1r3DAQBmBTGug27R_oSYXSm5ORZMn2sSz5gi17SAK5BCNL442CLbka7yH_Plo25FJodZEOz7waZoriG4czzuv6nEOlZNM-tApAAwioPxQrriSUDZfNx_zOoDyIT8VnomcA3iiQq-JxG9hNWDDNT4aQ_Y4ORx92bIiJbefFWzOyS99jYrcYKCZiF1OPzqFjPrD74J1PaBcfQ4brOM2R_ILs9oUWnOhLcTKYkfDr231a3F9e3K2vy8326mb9a1PaCsRStlrIyig7gOt7rhqhh7pqbdu6ygnQqnJGt64XLfYyn8Y4pYUTFtByXdlGnhbfj7mRFt-RzS3YJxtDyK11PI8DeDY_j2ZO8c8eaekmTxbH0QSMe-qkzsmgxH-hqCsNQtcZiiO0KRIlHLo5-cmkl_xld1hL9_dactGPt3RDebhDMsF6eq-USghe68zOj4zMDrvnuE95wPSv4Fcv3pld</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Sirkis, James S.</creator><creator>Lu, I-Ping</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>8BQ</scope><scope>OTOTI</scope></search><sort><creationdate>19950301</creationdate><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><author>Sirkis, James S. ; Lu, I-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Imaging detectors and sensors</topic><topic>INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>INTERFACES</topic><topic>MATERIALS SCIENCE</topic><topic>MEASURING METHODS</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical elements, devices, and systems</topic><topic>OPTICAL EQUIPMENT</topic><topic>Optics</topic><topic>Physics</topic><topic>REINFORCED PLASTICS</topic><topic>RESIDUAL STRESSES</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Sensors, gyros</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirkis, James S.</creatorcontrib><creatorcontrib>Lu, I-Ping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>OSTI.GOV</collection><jtitle>Journal of Intelligent Material Systems and Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirkis, James S.</au><au>Lu, I-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</atitle><jtitle>Journal of Intelligent Material Systems and Structures</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>6</volume><issue>2</issue><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</abstract><cop>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X9500600207</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of Intelligent Material Systems and Structures, 1995-03, Vol.6 (2), p.199-209 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_36338052 |
source | SAGE Complete A-Z List |
subjects | Applied sciences Circuit properties Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Fundamental areas of phenomenology (including applications) General equipment and techniques Imaging detectors and sensors INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS Instruments, apparatus, components and techniques common to several branches of physics and astronomy Integrated optics. Optical fibers and wave guides INTERFACES MATERIALS SCIENCE MEASURING METHODS Optical and optoelectronic circuits Optical elements, devices, and systems OPTICAL EQUIPMENT Optics Physics REINFORCED PLASTICS RESIDUAL STRESSES Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Sensors, gyros Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Interphase%20Modeling%20for%20Optical%20Fiber%20Sensors%20Embedded%20in%20Unidirectional%20Composite%20Systems&rft.jtitle=Journal%20of%20Intelligent%20Material%20Systems%20and%20Structures&rft.au=Sirkis,%20James%20S.&rft.date=1995-03-01&rft.volume=6&rft.issue=2&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X9500600207&rft_dat=%3Cproquest_osti_%3E36338052%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27460267&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X9500600207&rfr_iscdi=true |