On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems

This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Intelligent Material Systems and Structures 1995-03, Vol.6 (2), p.199-209
Hauptverfasser: Sirkis, James S., Lu, I-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 2
container_start_page 199
container_title Journal of Intelligent Material Systems and Structures
container_volume 6
creator Sirkis, James S.
Lu, I-Ping
description This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.
doi_str_mv 10.1177/1045389X9500600207
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_36338052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X9500600207</sage_id><sourcerecordid>36338052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmBTGug27R_oSYXSm5ORZMn2sSz5gi17SAK5BCNL442CLbka7yH_Plo25FJodZEOz7waZoriG4czzuv6nEOlZNM-tApAAwioPxQrriSUDZfNx_zOoDyIT8VnomcA3iiQq-JxG9hNWDDNT4aQ_Y4ORx92bIiJbefFWzOyS99jYrcYKCZiF1OPzqFjPrD74J1PaBcfQ4brOM2R_ILs9oUWnOhLcTKYkfDr231a3F9e3K2vy8326mb9a1PaCsRStlrIyig7gOt7rhqhh7pqbdu6ygnQqnJGt64XLfYyn8Y4pYUTFtByXdlGnhbfj7mRFt-RzS3YJxtDyK11PI8DeDY_j2ZO8c8eaekmTxbH0QSMe-qkzsmgxH-hqCsNQtcZiiO0KRIlHLo5-cmkl_xld1hL9_dactGPt3RDebhDMsF6eq-USghe68zOj4zMDrvnuE95wPSv4Fcv3pld</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27460267</pqid></control><display><type>article</type><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><source>SAGE Complete A-Z List</source><creator>Sirkis, James S. ; Lu, I-Ping</creator><creatorcontrib>Sirkis, James S. ; Lu, I-Ping</creatorcontrib><description>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X9500600207</identifier><language>eng</language><publisher>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA: SAGE Publications</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Imaging detectors and sensors ; INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Integrated optics. Optical fibers and wave guides ; INTERFACES ; MATERIALS SCIENCE ; MEASURING METHODS ; Optical and optoelectronic circuits ; Optical elements, devices, and systems ; OPTICAL EQUIPMENT ; Optics ; Physics ; REINFORCED PLASTICS ; RESIDUAL STRESSES ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Sensors, gyros ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Journal of Intelligent Material Systems and Structures, 1995-03, Vol.6 (2), p.199-209</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</citedby><cites>FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X9500600207$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X9500600207$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3522176$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/102001$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirkis, James S.</creatorcontrib><creatorcontrib>Lu, I-Ping</creatorcontrib><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><title>Journal of Intelligent Material Systems and Structures</title><description>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Imaging detectors and sensors</subject><subject>INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>INTERFACES</subject><subject>MATERIALS SCIENCE</subject><subject>MEASURING METHODS</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical elements, devices, and systems</subject><subject>OPTICAL EQUIPMENT</subject><subject>Optics</subject><subject>Physics</subject><subject>REINFORCED PLASTICS</subject><subject>RESIDUAL STRESSES</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Sensors, gyros</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0U1r3DAQBmBTGug27R_oSYXSm5ORZMn2sSz5gi17SAK5BCNL442CLbka7yH_Plo25FJodZEOz7waZoriG4czzuv6nEOlZNM-tApAAwioPxQrriSUDZfNx_zOoDyIT8VnomcA3iiQq-JxG9hNWDDNT4aQ_Y4ORx92bIiJbefFWzOyS99jYrcYKCZiF1OPzqFjPrD74J1PaBcfQ4brOM2R_ILs9oUWnOhLcTKYkfDr231a3F9e3K2vy8326mb9a1PaCsRStlrIyig7gOt7rhqhh7pqbdu6ygnQqnJGt64XLfYyn8Y4pYUTFtByXdlGnhbfj7mRFt-RzS3YJxtDyK11PI8DeDY_j2ZO8c8eaekmTxbH0QSMe-qkzsmgxH-hqCsNQtcZiiO0KRIlHLo5-cmkl_xld1hL9_dactGPt3RDebhDMsF6eq-USghe68zOj4zMDrvnuE95wPSv4Fcv3pld</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Sirkis, James S.</creator><creator>Lu, I-Ping</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>8BQ</scope><scope>OTOTI</scope></search><sort><creationdate>19950301</creationdate><title>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</title><author>Sirkis, James S. ; Lu, I-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-96234a5cf0dbb15826f749c99d4d20654da69db29eb33338ad562d2c0ec164c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Imaging detectors and sensors</topic><topic>INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>INTERFACES</topic><topic>MATERIALS SCIENCE</topic><topic>MEASURING METHODS</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical elements, devices, and systems</topic><topic>OPTICAL EQUIPMENT</topic><topic>Optics</topic><topic>Physics</topic><topic>REINFORCED PLASTICS</topic><topic>RESIDUAL STRESSES</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Sensors, gyros</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirkis, James S.</creatorcontrib><creatorcontrib>Lu, I-Ping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>OSTI.GOV</collection><jtitle>Journal of Intelligent Material Systems and Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirkis, James S.</au><au>Lu, I-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems</atitle><jtitle>Journal of Intelligent Material Systems and Structures</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>6</volume><issue>2</issue><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>This paper investigates the local stress of a polyimide coated optical fiber sensor surrounded by a transversely isotropic AS4-3501 graphite/epoxy host material. Spatially varying and spatially constant interphase composite cylinders models are used to understand the behavior of this system to longitudinal and radial normal, in-plane shear, and uniform thermal loading conditions. Interphase thicknesses used in the modeling effort are inferred from electron backscatter and scanning acoustic techniques. The results show that the gradient interphase models used in this paper are not warranted for this material system, that the thermal residual stresses in the core/cladding region can be significant, and that the optical fiber does not degrade the axial strengths of the composite, but the transverse tensile and compressive strengths are reduced by 15 and 60 percent respectively.</abstract><cop>851 New Holland Ave., Box 3535, Lancaster, PA 17604, USA</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X9500600207</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of Intelligent Material Systems and Structures, 1995-03, Vol.6 (2), p.199-209
issn 1045-389X
1530-8138
language eng
recordid cdi_proquest_miscellaneous_36338052
source SAGE Complete A-Z List
subjects Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Imaging detectors and sensors
INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Integrated optics. Optical fibers and wave guides
INTERFACES
MATERIALS SCIENCE
MEASURING METHODS
Optical and optoelectronic circuits
Optical elements, devices, and systems
OPTICAL EQUIPMENT
Optics
Physics
REINFORCED PLASTICS
RESIDUAL STRESSES
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Sensors, gyros
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title On Interphase Modeling for Optical Fiber Sensors Embedded in Unidirectional Composite Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Interphase%20Modeling%20for%20Optical%20Fiber%20Sensors%20Embedded%20in%20Unidirectional%20Composite%20Systems&rft.jtitle=Journal%20of%20Intelligent%20Material%20Systems%20and%20Structures&rft.au=Sirkis,%20James%20S.&rft.date=1995-03-01&rft.volume=6&rft.issue=2&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X9500600207&rft_dat=%3Cproquest_osti_%3E36338052%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27460267&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X9500600207&rfr_iscdi=true