Microchip Self-Assembly on a Substrate Using Plasma Treatment

This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on advanced packaging 2008-05, Vol.31 (2), p.404-409
Hauptverfasser: CHANG, Chia-Shou, UANG, Ruoh-Huey, WU, Enboa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 2
container_start_page 404
container_title IEEE transactions on advanced packaging
container_volume 31
creator CHANG, Chia-Shou
UANG, Ruoh-Huey
WU, Enboa
description This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.
doi_str_mv 10.1109/TADVP.2008.923383
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36330350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4512104</ieee_id><sourcerecordid>2327131861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsH78APGyCOpp6ySTbCYHD8VvqFho6zXEmNUt-1GT7cF_79aKBw_CwAzM8w7MkyRHDIaMgb6Yja6fJ0MOQEPNEQm3kgGTUmVaE2yvZ84yRI67yV6MCwAmSPBBcvlYutC693KZTn1VZKMYff1SfaZtk9p0unqJXbCdT-exbN7SSWVjbdNZ8LarfdMdJDuFraI__On7yfz2ZnZ1n42f7h6uRuPMIckuK1SugCsgawly9Qq5dtK_aqE8FRw5MalEjgQFoc7RSXQ650ScEQnSEveT883dZWg_Vj52pi6j81VlG9-uoiElYV26J8_-JTFHBJTQgyd_wEW7Ck3_haEcAaTSoofYBuodxRh8YZahrG34NAzM2rv59m7W3s3Ge585_Tlso7NVEWzjyvgb5ICohOA9d7zhSu_971pIxhkI_AI5OIeD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863005794</pqid></control><display><type>article</type><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><source>IEEE Electronic Library (IEL)</source><creator>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</creator><creatorcontrib>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</creatorcontrib><description>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.923383</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NY: IEEE</publisher><subject>Applied sciences ; Argon ; Assembly ; Biological and medical sciences ; Biosensors ; Biotechnology ; Bonding ; Contact angle ; Design. Technologies. Operation analysis. Testing ; Electronics ; Errors ; Exact sciences and technology ; Flux ; Force control ; Fundamental and applied biological sciences. Psychology ; Gold ; hydrophilic ; hydrophobic ; Integrated circuits ; Light emitting diodes ; Methods. Procedures. Technologies ; Optoelectronic devices ; Plasma ; plasma treatment ; Plasmas ; Radio frequency identification ; RFID tags ; Self assembly ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Surface treatment ; Various methods and equipments</subject><ispartof>IEEE transactions on advanced packaging, 2008-05, Vol.31 (2), p.404-409</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</citedby><cites>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4512104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4512104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20337442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHANG, Chia-Shou</creatorcontrib><creatorcontrib>UANG, Ruoh-Huey</creatorcontrib><creatorcontrib>WU, Enboa</creatorcontrib><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</description><subject>Applied sciences</subject><subject>Argon</subject><subject>Assembly</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Bonding</subject><subject>Contact angle</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Force control</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gold</subject><subject>hydrophilic</subject><subject>hydrophobic</subject><subject>Integrated circuits</subject><subject>Light emitting diodes</subject><subject>Methods. Procedures. Technologies</subject><subject>Optoelectronic devices</subject><subject>Plasma</subject><subject>plasma treatment</subject><subject>Plasmas</subject><subject>Radio frequency identification</subject><subject>RFID tags</subject><subject>Self assembly</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Surface treatment</subject><subject>Various methods and equipments</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsH78APGyCOpp6ySTbCYHD8VvqFho6zXEmNUt-1GT7cF_79aKBw_CwAzM8w7MkyRHDIaMgb6Yja6fJ0MOQEPNEQm3kgGTUmVaE2yvZ84yRI67yV6MCwAmSPBBcvlYutC693KZTn1VZKMYff1SfaZtk9p0unqJXbCdT-exbN7SSWVjbdNZ8LarfdMdJDuFraI__On7yfz2ZnZ1n42f7h6uRuPMIckuK1SugCsgawly9Qq5dtK_aqE8FRw5MalEjgQFoc7RSXQ650ScEQnSEveT883dZWg_Vj52pi6j81VlG9-uoiElYV26J8_-JTFHBJTQgyd_wEW7Ck3_haEcAaTSoofYBuodxRh8YZahrG34NAzM2rv59m7W3s3Ge585_Tlso7NVEWzjyvgb5ICohOA9d7zhSu_971pIxhkI_AI5OIeD</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>CHANG, Chia-Shou</creator><creator>UANG, Ruoh-Huey</creator><creator>WU, Enboa</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080501</creationdate><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><author>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Argon</topic><topic>Assembly</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Bonding</topic><topic>Contact angle</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Force control</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gold</topic><topic>hydrophilic</topic><topic>hydrophobic</topic><topic>Integrated circuits</topic><topic>Light emitting diodes</topic><topic>Methods. Procedures. Technologies</topic><topic>Optoelectronic devices</topic><topic>Plasma</topic><topic>plasma treatment</topic><topic>Plasmas</topic><topic>Radio frequency identification</topic><topic>RFID tags</topic><topic>Self assembly</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Surface treatment</topic><topic>Various methods and equipments</topic><toplevel>online_resources</toplevel><creatorcontrib>CHANG, Chia-Shou</creatorcontrib><creatorcontrib>UANG, Ruoh-Huey</creatorcontrib><creatorcontrib>WU, Enboa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHANG, Chia-Shou</au><au>UANG, Ruoh-Huey</au><au>WU, Enboa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microchip Self-Assembly on a Substrate Using Plasma Treatment</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>31</volume><issue>2</issue><spage>404</spage><epage>409</epage><pages>404-409</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</abstract><cop>Piscataway, NY</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.923383</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3323
ispartof IEEE transactions on advanced packaging, 2008-05, Vol.31 (2), p.404-409
issn 1521-3323
1557-9980
language eng
recordid cdi_proquest_miscellaneous_36330350
source IEEE Electronic Library (IEL)
subjects Applied sciences
Argon
Assembly
Biological and medical sciences
Biosensors
Biotechnology
Bonding
Contact angle
Design. Technologies. Operation analysis. Testing
Electronics
Errors
Exact sciences and technology
Flux
Force control
Fundamental and applied biological sciences. Psychology
Gold
hydrophilic
hydrophobic
Integrated circuits
Light emitting diodes
Methods. Procedures. Technologies
Optoelectronic devices
Plasma
plasma treatment
Plasmas
Radio frequency identification
RFID tags
Self assembly
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Surface treatment
Various methods and equipments
title Microchip Self-Assembly on a Substrate Using Plasma Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microchip%20Self-Assembly%20on%20a%20Substrate%20Using%20Plasma%20Treatment&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=CHANG,%20Chia-Shou&rft.date=2008-05-01&rft.volume=31&rft.issue=2&rft.spage=404&rft.epage=409&rft.pages=404-409&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.923383&rft_dat=%3Cproquest_RIE%3E2327131861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863005794&rft_id=info:pmid/&rft_ieee_id=4512104&rfr_iscdi=true