Microchip Self-Assembly on a Substrate Using Plasma Treatment
This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (sel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on advanced packaging 2008-05, Vol.31 (2), p.404-409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 404 |
container_title | IEEE transactions on advanced packaging |
container_volume | 31 |
creator | CHANG, Chia-Shou UANG, Ruoh-Huey WU, Enboa |
description | This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips. |
doi_str_mv | 10.1109/TADVP.2008.923383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36330350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4512104</ieee_id><sourcerecordid>2327131861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsH78APGyCOpp6ySTbCYHD8VvqFho6zXEmNUt-1GT7cF_79aKBw_CwAzM8w7MkyRHDIaMgb6Yja6fJ0MOQEPNEQm3kgGTUmVaE2yvZ84yRI67yV6MCwAmSPBBcvlYutC693KZTn1VZKMYff1SfaZtk9p0unqJXbCdT-exbN7SSWVjbdNZ8LarfdMdJDuFraI__On7yfz2ZnZ1n42f7h6uRuPMIckuK1SugCsgawly9Qq5dtK_aqE8FRw5MalEjgQFoc7RSXQ650ScEQnSEveT883dZWg_Vj52pi6j81VlG9-uoiElYV26J8_-JTFHBJTQgyd_wEW7Ck3_haEcAaTSoofYBuodxRh8YZahrG34NAzM2rv59m7W3s3Ge585_Tlso7NVEWzjyvgb5ICohOA9d7zhSu_971pIxhkI_AI5OIeD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863005794</pqid></control><display><type>article</type><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><source>IEEE Electronic Library (IEL)</source><creator>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</creator><creatorcontrib>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</creatorcontrib><description>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.923383</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NY: IEEE</publisher><subject>Applied sciences ; Argon ; Assembly ; Biological and medical sciences ; Biosensors ; Biotechnology ; Bonding ; Contact angle ; Design. Technologies. Operation analysis. Testing ; Electronics ; Errors ; Exact sciences and technology ; Flux ; Force control ; Fundamental and applied biological sciences. Psychology ; Gold ; hydrophilic ; hydrophobic ; Integrated circuits ; Light emitting diodes ; Methods. Procedures. Technologies ; Optoelectronic devices ; Plasma ; plasma treatment ; Plasmas ; Radio frequency identification ; RFID tags ; Self assembly ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Surface treatment ; Various methods and equipments</subject><ispartof>IEEE transactions on advanced packaging, 2008-05, Vol.31 (2), p.404-409</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</citedby><cites>FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4512104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4512104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20337442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHANG, Chia-Shou</creatorcontrib><creatorcontrib>UANG, Ruoh-Huey</creatorcontrib><creatorcontrib>WU, Enboa</creatorcontrib><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</description><subject>Applied sciences</subject><subject>Argon</subject><subject>Assembly</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Bonding</subject><subject>Contact angle</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Force control</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gold</subject><subject>hydrophilic</subject><subject>hydrophobic</subject><subject>Integrated circuits</subject><subject>Light emitting diodes</subject><subject>Methods. Procedures. Technologies</subject><subject>Optoelectronic devices</subject><subject>Plasma</subject><subject>plasma treatment</subject><subject>Plasmas</subject><subject>Radio frequency identification</subject><subject>RFID tags</subject><subject>Self assembly</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Surface treatment</subject><subject>Various methods and equipments</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsH78APGyCOpp6ySTbCYHD8VvqFho6zXEmNUt-1GT7cF_79aKBw_CwAzM8w7MkyRHDIaMgb6Yja6fJ0MOQEPNEQm3kgGTUmVaE2yvZ84yRI67yV6MCwAmSPBBcvlYutC693KZTn1VZKMYff1SfaZtk9p0unqJXbCdT-exbN7SSWVjbdNZ8LarfdMdJDuFraI__On7yfz2ZnZ1n42f7h6uRuPMIckuK1SugCsgawly9Qq5dtK_aqE8FRw5MalEjgQFoc7RSXQ650ScEQnSEveT883dZWg_Vj52pi6j81VlG9-uoiElYV26J8_-JTFHBJTQgyd_wEW7Ck3_haEcAaTSoofYBuodxRh8YZahrG34NAzM2rv59m7W3s3Ge585_Tlso7NVEWzjyvgb5ICohOA9d7zhSu_971pIxhkI_AI5OIeD</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>CHANG, Chia-Shou</creator><creator>UANG, Ruoh-Huey</creator><creator>WU, Enboa</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080501</creationdate><title>Microchip Self-Assembly on a Substrate Using Plasma Treatment</title><author>CHANG, Chia-Shou ; UANG, Ruoh-Huey ; WU, Enboa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f76702708aa8067d069c5ed947e8f232815746380f83963c53c96288218848953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Argon</topic><topic>Assembly</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Bonding</topic><topic>Contact angle</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Force control</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gold</topic><topic>hydrophilic</topic><topic>hydrophobic</topic><topic>Integrated circuits</topic><topic>Light emitting diodes</topic><topic>Methods. Procedures. Technologies</topic><topic>Optoelectronic devices</topic><topic>Plasma</topic><topic>plasma treatment</topic><topic>Plasmas</topic><topic>Radio frequency identification</topic><topic>RFID tags</topic><topic>Self assembly</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Surface treatment</topic><topic>Various methods and equipments</topic><toplevel>online_resources</toplevel><creatorcontrib>CHANG, Chia-Shou</creatorcontrib><creatorcontrib>UANG, Ruoh-Huey</creatorcontrib><creatorcontrib>WU, Enboa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHANG, Chia-Shou</au><au>UANG, Ruoh-Huey</au><au>WU, Enboa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microchip Self-Assembly on a Substrate Using Plasma Treatment</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>31</volume><issue>2</issue><spage>404</spage><epage>409</epage><pages>404-409</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>This paper demonstrates a flux/2-ethyl-1-hexanol mixture capable of performing a self-assembly process. An /Ar plasma treatment controls the surface free energy of Si, leading to better self-assembly driven by capillary force. Hydrophobic bonding pads resulting from ODT (1-octadecanethiol) SAMs (self-assembled monolayers) on a microchip can be self-assembled on hydrophobic bonding sites caused by a flux/2-ethyl-1-hexanol mixture on a substrate within 0.4 s. Microchips with 400200-rectangle bonding pads exhibited higher alignment precision (displacement error ; rotation error ) than 400400 -squares. The Owens-Wendt method was used to calculate the contact angle of 2-ethyl-1-hexanol to different bonding surfaces in water. Plasma treatment enabled the smallest contact angle of 2-ethyl-1-hexanol to ODT-modified Au surface (4.4), and the largest contact angle of 2-ethyl-1-hexanol to plasma-modified Si surface (153.5) in water. It explained why the plasma treatment exhibited benefit of self-assembly. This self-assembly technique could be used to assemble light emitting diodes, RFID tags, biosensors, or other types of microchips.</abstract><cop>Piscataway, NY</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.923383</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3323 |
ispartof | IEEE transactions on advanced packaging, 2008-05, Vol.31 (2), p.404-409 |
issn | 1521-3323 1557-9980 |
language | eng |
recordid | cdi_proquest_miscellaneous_36330350 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Argon Assembly Biological and medical sciences Biosensors Biotechnology Bonding Contact angle Design. Technologies. Operation analysis. Testing Electronics Errors Exact sciences and technology Flux Force control Fundamental and applied biological sciences. Psychology Gold hydrophilic hydrophobic Integrated circuits Light emitting diodes Methods. Procedures. Technologies Optoelectronic devices Plasma plasma treatment Plasmas Radio frequency identification RFID tags Self assembly Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Surface treatment Various methods and equipments |
title | Microchip Self-Assembly on a Substrate Using Plasma Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microchip%20Self-Assembly%20on%20a%20Substrate%20Using%20Plasma%20Treatment&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=CHANG,%20Chia-Shou&rft.date=2008-05-01&rft.volume=31&rft.issue=2&rft.spage=404&rft.epage=409&rft.pages=404-409&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.923383&rft_dat=%3Cproquest_RIE%3E2327131861%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863005794&rft_id=info:pmid/&rft_ieee_id=4512104&rfr_iscdi=true |