Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding
Actin cytoskeleton has long been a focus of attention due to its biological significance and unique rheological properties. Although F-actin networks have been extensively studied experimentally and several theoretical models proposed, the detailed molecular interactions between actin binding protei...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular bioengineering 2009-03, Vol.2 (1), p.28-38 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | Cellular and molecular bioengineering |
container_volume | 2 |
creator | Lee, Hyungsuk Pelz, Benjamin Ferrer, Jorge M. Kim, Taeyoon Lang, Matthew J. Kamm, Roger D. |
description | Actin cytoskeleton has long been a focus of attention due to its biological significance and unique rheological properties. Although F-actin networks have been extensively studied experimentally and several theoretical models proposed, the detailed molecular interactions between actin binding proteins (ABPs) and actin filaments that regulate network behavior remain unclear. Here, using an
in vitro
assay that allows direct measurements on the bond between one actin cross-linking protein and two actin filaments, we demonstrate force-induced unbinding and unfolding of filamin. The critical forces prove to be similar, 70 ± 23 pN for unbinding and 57 ± 19 pN for unfolding, suggesting that both are important mechanisms governing cytoskeletal rheology. We also obtain the mechanical response of a cross-linked F-actin network to an optically trapped microbead and observe abrupt transitions implying rupture or unfolding of cross-links. These measurements are interpreted with the aid of a computational simulation of the experiment to provide greater insight into physical mechanisms. |
doi_str_mv | 10.1007/s12195-009-0048-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36324057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895274751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-fe7f0084d5c3c4238014304c9ba7f32eaf8cf6979cd385e6ef9f73138a4447803</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsFY_gLfgwdvqZCfZzR6l_qlQENRevIR0N2m33SY1SQ_99u6yoiB4GGYe_N4w85LkksINBShuA81oyVOAsismUnGUjKjIecoB8fhnzvhpchbCGiDPANko-Zgcogsb3eqoWnKvjfNbFRtniYpk2ixX5C161dhAlK1JXGny6lpNnCET70JI28ZuyNwa19aNXRLnO7FobC_OkxOj2qAvvvs4mT8-vE-m6ezl6XlyN0srZHlMjS4MgGA1r7BiGQqgDIFV5UIVBjOtjKhMXhZlVaPgOtemNAVSFIoxVgjAcXI97N1597nXIcptEyrdtspqtw8Sc8wY8KIDr_6Aa7f3trtNZsCFQI7YQXSAqv4_r43c-War_EFSkH3UcohadlHLPmopOk82eELH2qX2v4v_N30BC_qAQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205883533</pqid></control><display><type>article</type><title>Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding</title><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Lee, Hyungsuk ; Pelz, Benjamin ; Ferrer, Jorge M. ; Kim, Taeyoon ; Lang, Matthew J. ; Kamm, Roger D.</creator><creatorcontrib>Lee, Hyungsuk ; Pelz, Benjamin ; Ferrer, Jorge M. ; Kim, Taeyoon ; Lang, Matthew J. ; Kamm, Roger D.</creatorcontrib><description>Actin cytoskeleton has long been a focus of attention due to its biological significance and unique rheological properties. Although F-actin networks have been extensively studied experimentally and several theoretical models proposed, the detailed molecular interactions between actin binding proteins (ABPs) and actin filaments that regulate network behavior remain unclear. Here, using an
in vitro
assay that allows direct measurements on the bond between one actin cross-linking protein and two actin filaments, we demonstrate force-induced unbinding and unfolding of filamin. The critical forces prove to be similar, 70 ± 23 pN for unbinding and 57 ± 19 pN for unfolding, suggesting that both are important mechanisms governing cytoskeletal rheology. We also obtain the mechanical response of a cross-linked F-actin network to an optically trapped microbead and observe abrupt transitions implying rupture or unfolding of cross-links. These measurements are interpreted with the aid of a computational simulation of the experiment to provide greater insight into physical mechanisms.</description><identifier>ISSN: 1865-5025</identifier><identifier>EISSN: 1865-5033</identifier><identifier>DOI: 10.1007/s12195-009-0048-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Bioengineering ; Biological and Medical Physics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biophysics ; Cell Biology ; Cellular biology ; Engineering ; Proteins ; Rheology ; Studies</subject><ispartof>Cellular and molecular bioengineering, 2009-03, Vol.2 (1), p.28-38</ispartof><rights>Biomedical Engineering Society 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-fe7f0084d5c3c4238014304c9ba7f32eaf8cf6979cd385e6ef9f73138a4447803</citedby><cites>FETCH-LOGICAL-c346t-fe7f0084d5c3c4238014304c9ba7f32eaf8cf6979cd385e6ef9f73138a4447803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12195-009-0048-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12195-009-0048-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lee, Hyungsuk</creatorcontrib><creatorcontrib>Pelz, Benjamin</creatorcontrib><creatorcontrib>Ferrer, Jorge M.</creatorcontrib><creatorcontrib>Kim, Taeyoon</creatorcontrib><creatorcontrib>Lang, Matthew J.</creatorcontrib><creatorcontrib>Kamm, Roger D.</creatorcontrib><title>Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding</title><title>Cellular and molecular bioengineering</title><addtitle>Cel. Mol. Bioeng</addtitle><description>Actin cytoskeleton has long been a focus of attention due to its biological significance and unique rheological properties. Although F-actin networks have been extensively studied experimentally and several theoretical models proposed, the detailed molecular interactions between actin binding proteins (ABPs) and actin filaments that regulate network behavior remain unclear. Here, using an
in vitro
assay that allows direct measurements on the bond between one actin cross-linking protein and two actin filaments, we demonstrate force-induced unbinding and unfolding of filamin. The critical forces prove to be similar, 70 ± 23 pN for unbinding and 57 ± 19 pN for unfolding, suggesting that both are important mechanisms governing cytoskeletal rheology. We also obtain the mechanical response of a cross-linked F-actin network to an optically trapped microbead and observe abrupt transitions implying rupture or unfolding of cross-links. These measurements are interpreted with the aid of a computational simulation of the experiment to provide greater insight into physical mechanisms.</description><subject>Bioengineering</subject><subject>Biological and Medical Physics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Engineering</subject><subject>Proteins</subject><subject>Rheology</subject><subject>Studies</subject><issn>1865-5025</issn><issn>1865-5033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxRdRsFY_gLfgwdvqZCfZzR6l_qlQENRevIR0N2m33SY1SQ_99u6yoiB4GGYe_N4w85LkksINBShuA81oyVOAsismUnGUjKjIecoB8fhnzvhpchbCGiDPANko-Zgcogsb3eqoWnKvjfNbFRtniYpk2ixX5C161dhAlK1JXGny6lpNnCET70JI28ZuyNwa19aNXRLnO7FobC_OkxOj2qAvvvs4mT8-vE-m6ezl6XlyN0srZHlMjS4MgGA1r7BiGQqgDIFV5UIVBjOtjKhMXhZlVaPgOtemNAVSFIoxVgjAcXI97N1597nXIcptEyrdtspqtw8Sc8wY8KIDr_6Aa7f3trtNZsCFQI7YQXSAqv4_r43c-War_EFSkH3UcohadlHLPmopOk82eELH2qX2v4v_N30BC_qAQw</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Lee, Hyungsuk</creator><creator>Pelz, Benjamin</creator><creator>Ferrer, Jorge M.</creator><creator>Kim, Taeyoon</creator><creator>Lang, Matthew J.</creator><creator>Kamm, Roger D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090301</creationdate><title>Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding</title><author>Lee, Hyungsuk ; Pelz, Benjamin ; Ferrer, Jorge M. ; Kim, Taeyoon ; Lang, Matthew J. ; Kamm, Roger D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-fe7f0084d5c3c4238014304c9ba7f32eaf8cf6979cd385e6ef9f73138a4447803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bioengineering</topic><topic>Biological and Medical Physics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Engineering</topic><topic>Proteins</topic><topic>Rheology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyungsuk</creatorcontrib><creatorcontrib>Pelz, Benjamin</creatorcontrib><creatorcontrib>Ferrer, Jorge M.</creatorcontrib><creatorcontrib>Kim, Taeyoon</creatorcontrib><creatorcontrib>Lang, Matthew J.</creatorcontrib><creatorcontrib>Kamm, Roger D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Cellular and molecular bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyungsuk</au><au>Pelz, Benjamin</au><au>Ferrer, Jorge M.</au><au>Kim, Taeyoon</au><au>Lang, Matthew J.</au><au>Kamm, Roger D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding</atitle><jtitle>Cellular and molecular bioengineering</jtitle><stitle>Cel. Mol. Bioeng</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>2</volume><issue>1</issue><spage>28</spage><epage>38</epage><pages>28-38</pages><issn>1865-5025</issn><eissn>1865-5033</eissn><abstract>Actin cytoskeleton has long been a focus of attention due to its biological significance and unique rheological properties. Although F-actin networks have been extensively studied experimentally and several theoretical models proposed, the detailed molecular interactions between actin binding proteins (ABPs) and actin filaments that regulate network behavior remain unclear. Here, using an
in vitro
assay that allows direct measurements on the bond between one actin cross-linking protein and two actin filaments, we demonstrate force-induced unbinding and unfolding of filamin. The critical forces prove to be similar, 70 ± 23 pN for unbinding and 57 ± 19 pN for unfolding, suggesting that both are important mechanisms governing cytoskeletal rheology. We also obtain the mechanical response of a cross-linked F-actin network to an optically trapped microbead and observe abrupt transitions implying rupture or unfolding of cross-links. These measurements are interpreted with the aid of a computational simulation of the experiment to provide greater insight into physical mechanisms.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12195-009-0048-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-5025 |
ispartof | Cellular and molecular bioengineering, 2009-03, Vol.2 (1), p.28-38 |
issn | 1865-5025 1865-5033 |
language | eng |
recordid | cdi_proquest_miscellaneous_36324057 |
source | Springer Nature - Complete Springer Journals; PubMed Central |
subjects | Bioengineering Biological and Medical Physics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biophysics Cell Biology Cellular biology Engineering Proteins Rheology Studies |
title | Cytoskeletal Deformation at High Strains and the Role of Cross-link Unfolding or Unbinding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoskeletal%20Deformation%20at%20High%20Strains%20and%20the%20Role%20of%20Cross-link%20Unfolding%20or%20Unbinding&rft.jtitle=Cellular%20and%20molecular%20bioengineering&rft.au=Lee,%20Hyungsuk&rft.date=2009-03-01&rft.volume=2&rft.issue=1&rft.spage=28&rft.epage=38&rft.pages=28-38&rft.issn=1865-5025&rft.eissn=1865-5033&rft_id=info:doi/10.1007/s12195-009-0048-8&rft_dat=%3Cproquest_cross%3E1895274751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205883533&rft_id=info:pmid/&rfr_iscdi=true |