A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors
A coupled magnetomechanical model for the design and control of Villarieffect magnetostrictive sensors is presented. The model quantifies the magnetization changes that a magnetostrictive material undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is chara...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2002-11, Vol.13 (11), p.737-747 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 11 |
container_start_page | 737 |
container_title | Journal of intelligent material systems and structures |
container_volume | 13 |
creator | Dapino, Marcelo J. Smith, Ralph C. Calkins, Frederick T. Flatau, Alison B. |
description | A coupled magnetomechanical model for the design and control of Villarieffect magnetostrictive sensors is presented. The model quantifies the magnetization changes that a magnetostrictive material undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis. This theory is constructed from a thermodynamic balance between the energy available for magnetic moment rotation and the energy lost as domain walls attach to and detach from pinning sites. The effect of stress on magnetization is quantified through a law of approach to the anhysteretic magnetization. Elastic properties are incorporated by means of a wave equation that quantifies the strains and stresses which arise in magnetostrictive materials in response to moment rotations. This yields a nonlinear PDE system for the strains, stresses and magnetization state of a magnetostrictive transducer as it drives or is driven by external loads. Because the model addresses the magnetomechanical coupling, it is applicable to both magnetostrictive sensors and actuators. Properties of the model and approximation method are illustrated by comparison with experimental data collected from a Terfenol-D sensor. |
doi_str_mv | 10.1177/1045389X02013011005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36320269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X02013011005</sage_id><sourcerecordid>36320269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-dfb5c9305a9b4c056f3bda367b76d57db7462da40262b9fc77bf70a7898b6c363</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoOF6ewE02uqueNG3TLIdhvMAMLrzgrqS5aKTT1JxU8O2NjOJGXOVAvu_nnD_LTiicU8r5BYWyYo14ggIoA0oBqp1sRisGeUNZs5vmRORfyH52gPgKQJsK2Cwb52Thp7E3mqzl82Ci3xj1IgenZE_WXpueWB9-_jAGp6J7N-Q-yAH1pExAIgdNXEQyH8c-edH5gURPHl3fy-DypbVGRXJnBvQBj7I9K3s0x9_vYfZwubxfXOer26ubxXyVK1aKmGvbVUowqKToSgVVbVmnJat5x2tdcd3xsi60LKGoi05YxXlnOUjeiKarFavZYXa2zR2Df5sMxnbjUJm00mD8hG1CiiSLBLItqIJHDMa2Y3AbGT5aCu1Xu-0f7Sbr9DteYqrKpjqUw1-1bApRCJ442HIon0376qcwpKv_jf4E1RaJJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36320269</pqid></control><display><type>article</type><title>A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors</title><source>SAGE Complete A-Z List</source><creator>Dapino, Marcelo J. ; Smith, Ralph C. ; Calkins, Frederick T. ; Flatau, Alison B.</creator><creatorcontrib>Dapino, Marcelo J. ; Smith, Ralph C. ; Calkins, Frederick T. ; Flatau, Alison B.</creatorcontrib><description>A coupled magnetomechanical model for the design and control of Villarieffect magnetostrictive sensors is presented. The model quantifies the magnetization changes that a magnetostrictive material undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis. This theory is constructed from a thermodynamic balance between the energy available for magnetic moment rotation and the energy lost as domain walls attach to and detach from pinning sites. The effect of stress on magnetization is quantified through a law of approach to the anhysteretic magnetization. Elastic properties are incorporated by means of a wave equation that quantifies the strains and stresses which arise in magnetostrictive materials in response to moment rotations. This yields a nonlinear PDE system for the strains, stresses and magnetization state of a magnetostrictive transducer as it drives or is driven by external loads. Because the model addresses the magnetomechanical coupling, it is applicable to both magnetostrictive sensors and actuators. Properties of the model and approximation method are illustrated by comparison with experimental data collected from a Terfenol-D sensor.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X02013011005</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic properties and materials ; Magnetomechanical and magnetoelectric effects, magnetostriction ; Physics ; Transducers</subject><ispartof>Journal of intelligent material systems and structures, 2002-11, Vol.13 (11), p.737-747</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-dfb5c9305a9b4c056f3bda367b76d57db7462da40262b9fc77bf70a7898b6c363</citedby><cites>FETCH-LOGICAL-c349t-dfb5c9305a9b4c056f3bda367b76d57db7462da40262b9fc77bf70a7898b6c363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X02013011005$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X02013011005$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14829297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dapino, Marcelo J.</creatorcontrib><creatorcontrib>Smith, Ralph C.</creatorcontrib><creatorcontrib>Calkins, Frederick T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><title>A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors</title><title>Journal of intelligent material systems and structures</title><description>A coupled magnetomechanical model for the design and control of Villarieffect magnetostrictive sensors is presented. The model quantifies the magnetization changes that a magnetostrictive material undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis. This theory is constructed from a thermodynamic balance between the energy available for magnetic moment rotation and the energy lost as domain walls attach to and detach from pinning sites. The effect of stress on magnetization is quantified through a law of approach to the anhysteretic magnetization. Elastic properties are incorporated by means of a wave equation that quantifies the strains and stresses which arise in magnetostrictive materials in response to moment rotations. This yields a nonlinear PDE system for the strains, stresses and magnetization state of a magnetostrictive transducer as it drives or is driven by external loads. Because the model addresses the magnetomechanical coupling, it is applicable to both magnetostrictive sensors and actuators. Properties of the model and approximation method are illustrated by comparison with experimental data collected from a Terfenol-D sensor.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic properties and materials</subject><subject>Magnetomechanical and magnetoelectric effects, magnetostriction</subject><subject>Physics</subject><subject>Transducers</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhosoOF6ewE02uqueNG3TLIdhvMAMLrzgrqS5aKTT1JxU8O2NjOJGXOVAvu_nnD_LTiicU8r5BYWyYo14ggIoA0oBqp1sRisGeUNZs5vmRORfyH52gPgKQJsK2Cwb52Thp7E3mqzl82Ci3xj1IgenZE_WXpueWB9-_jAGp6J7N-Q-yAH1pExAIgdNXEQyH8c-edH5gURPHl3fy-DypbVGRXJnBvQBj7I9K3s0x9_vYfZwubxfXOer26ubxXyVK1aKmGvbVUowqKToSgVVbVmnJat5x2tdcd3xsi60LKGoi05YxXlnOUjeiKarFavZYXa2zR2Df5sMxnbjUJm00mD8hG1CiiSLBLItqIJHDMa2Y3AbGT5aCu1Xu-0f7Sbr9DteYqrKpjqUw1-1bApRCJ442HIon0376qcwpKv_jf4E1RaJJQ</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Dapino, Marcelo J.</creator><creator>Smith, Ralph C.</creator><creator>Calkins, Frederick T.</creator><creator>Flatau, Alison B.</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20021101</creationdate><title>A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors</title><author>Dapino, Marcelo J. ; Smith, Ralph C. ; Calkins, Frederick T. ; Flatau, Alison B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-dfb5c9305a9b4c056f3bda367b76d57db7462da40262b9fc77bf70a7898b6c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic properties and materials</topic><topic>Magnetomechanical and magnetoelectric effects, magnetostriction</topic><topic>Physics</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dapino, Marcelo J.</creatorcontrib><creatorcontrib>Smith, Ralph C.</creatorcontrib><creatorcontrib>Calkins, Frederick T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dapino, Marcelo J.</au><au>Smith, Ralph C.</au><au>Calkins, Frederick T.</au><au>Flatau, Alison B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>13</volume><issue>11</issue><spage>737</spage><epage>747</epage><pages>737-747</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>A coupled magnetomechanical model for the design and control of Villarieffect magnetostrictive sensors is presented. The model quantifies the magnetization changes that a magnetostrictive material undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis. This theory is constructed from a thermodynamic balance between the energy available for magnetic moment rotation and the energy lost as domain walls attach to and detach from pinning sites. The effect of stress on magnetization is quantified through a law of approach to the anhysteretic magnetization. Elastic properties are incorporated by means of a wave equation that quantifies the strains and stresses which arise in magnetostrictive materials in response to moment rotations. This yields a nonlinear PDE system for the strains, stresses and magnetization state of a magnetostrictive transducer as it drives or is driven by external loads. Because the model addresses the magnetomechanical coupling, it is applicable to both magnetostrictive sensors and actuators. Properties of the model and approximation method are illustrated by comparison with experimental data collected from a Terfenol-D sensor.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X02013011005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 2002-11, Vol.13 (11), p.737-747 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_36320269 |
source | SAGE Complete A-Z List |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Magnetic properties and materials Magnetomechanical and magnetoelectric effects, magnetostriction Physics Transducers |
title | A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Coupled%20Magnetomechanical%20Model%20for%20Magnetostrictive%20Transducers%20and%20its%20Application%20to%20Villari-Effect%20Sensors&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Dapino,%20Marcelo%20J.&rft.date=2002-11-01&rft.volume=13&rft.issue=11&rft.spage=737&rft.epage=747&rft.pages=737-747&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X02013011005&rft_dat=%3Cproquest_cross%3E36320269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36320269&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X02013011005&rfr_iscdi=true |