Experimental evidence for the origin of lead enrichment in convergent-margin magmas
IT has been proposed 1–5 that the low Ce/Pb ratio of subduction-related basalts, relative to their oceanic counterparts, arises by the preferential transfer of lead to the mantle wedge (overlying the subducting slab) by non-magmatic processes. Fluxing of the mantle wedge by low-Ce/Pb fluids, generat...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1995-11, Vol.378 (6552), p.54-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 6552 |
container_start_page | 54 |
container_title | Nature (London) |
container_volume | 378 |
creator | Brenan, James M. Shaw, Henry F. Ryerson, Frederick J. |
description | IT has been proposed
1–5
that the low Ce/Pb ratio of subduction-related basalts, relative to their oceanic counterparts, arises by the preferential transfer of lead to the mantle wedge (overlying the subducting slab) by non-magmatic processes. Fluxing of the mantle wedge by low-Ce/Pb fluids, generated by the dehydration of sub-ducted oceanic crust, is one mechanism favoured for this process (see, for example, ref. 5). Here we report the results of a series of high-pressure experiments, which confirm that low-Ce/Pb fluids coexist with the dominant mineral phases (garnet and clinopyroxene) produced during high-pressure dehydration of altered basalt. Our results show that the production of subduction-zone magmas from mantle sources fluxed by basalt-derived fluid is a mechanism by which relatively lead-rich, cerium-poor, mantle-derived material is added to the continents. The lead enrichment of the Earth's continental crust is thus a continuing process occurring at conver-gent margins. |
doi_str_mv | 10.1038/378054a0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36309313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8655853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-a7b99e0382b36f3f9310e1e3ff7bfb0a0bead4f81a122cb47710fccd80e8f7fa3</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtYq-BMWEdHD6mSTJtmjlPoBggf1vMymk7qym61JW_Tfm1I_QA-eQpKHdyYZxg45nHMQ5kJoAyOJsMUGXGqVS2X0NhsAFCYHI9Qu24vxBQBGXMsBe5i8zSk0HfkFthmtmil5S5nrQ7Z4pqwPzazxWe-ylnCakQ-NfV7jLJ3a3q8ozNIu7zCsXYezDuM-23HYRjr4XIfs6WryOL7J7-6vb8eXdzlKgEWOui5LSj0XtVBOuFJwIE7COV27GhDqVFI6w5EXha2l1hyctVMDZJx2KIbsZJM7D_3rkuKi6ppoqW3RU7-MlVACUqj4F3JVam60SvDoF3zpl8GnR1QFSKmE5Dqh0w2yoY8xkKvm6QMxvFccqvUMqq8ZJHr8mYfRYusCetvEb1-YEtRolNjZhsV042cUfsr-ifwAxeKTEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204463417</pqid></control><display><type>article</type><title>Experimental evidence for the origin of lead enrichment in convergent-margin magmas</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Brenan, James M. ; Shaw, Henry F. ; Ryerson, Frederick J.</creator><creatorcontrib>Brenan, James M. ; Shaw, Henry F. ; Ryerson, Frederick J.</creatorcontrib><description>IT has been proposed
1–5
that the low Ce/Pb ratio of subduction-related basalts, relative to their oceanic counterparts, arises by the preferential transfer of lead to the mantle wedge (overlying the subducting slab) by non-magmatic processes. Fluxing of the mantle wedge by low-Ce/Pb fluids, generated by the dehydration of sub-ducted oceanic crust, is one mechanism favoured for this process (see, for example, ref. 5). Here we report the results of a series of high-pressure experiments, which confirm that low-Ce/Pb fluids coexist with the dominant mineral phases (garnet and clinopyroxene) produced during high-pressure dehydration of altered basalt. Our results show that the production of subduction-zone magmas from mantle sources fluxed by basalt-derived fluid is a mechanism by which relatively lead-rich, cerium-poor, mantle-derived material is added to the continents. The lead enrichment of the Earth's continental crust is thus a continuing process occurring at conver-gent margins.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/378054a0</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Basalt ; Continental crust ; Crystalline rocks ; Dehydration ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geology ; Humanities and Social Sciences ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Isotope geochemistry ; Isotope geochemistry. Geochronology ; Lava ; Lead ; letter ; Marine ; Minerals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1995-11, Vol.378 (6552), p.54-56</ispartof><rights>Springer Nature Limited 1995</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Nov 2, 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-a7b99e0382b36f3f9310e1e3ff7bfb0a0bead4f81a122cb47710fccd80e8f7fa3</citedby><cites>FETCH-LOGICAL-a400t-a7b99e0382b36f3f9310e1e3ff7bfb0a0bead4f81a122cb47710fccd80e8f7fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/378054a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/378054a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2890655$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brenan, James M.</creatorcontrib><creatorcontrib>Shaw, Henry F.</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><title>Experimental evidence for the origin of lead enrichment in convergent-margin magmas</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>IT has been proposed
1–5
that the low Ce/Pb ratio of subduction-related basalts, relative to their oceanic counterparts, arises by the preferential transfer of lead to the mantle wedge (overlying the subducting slab) by non-magmatic processes. Fluxing of the mantle wedge by low-Ce/Pb fluids, generated by the dehydration of sub-ducted oceanic crust, is one mechanism favoured for this process (see, for example, ref. 5). Here we report the results of a series of high-pressure experiments, which confirm that low-Ce/Pb fluids coexist with the dominant mineral phases (garnet and clinopyroxene) produced during high-pressure dehydration of altered basalt. Our results show that the production of subduction-zone magmas from mantle sources fluxed by basalt-derived fluid is a mechanism by which relatively lead-rich, cerium-poor, mantle-derived material is added to the continents. The lead enrichment of the Earth's continental crust is thus a continuing process occurring at conver-gent margins.</description><subject>Basalt</subject><subject>Continental crust</subject><subject>Crystalline rocks</subject><subject>Dehydration</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Humanities and Social Sciences</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Lava</subject><subject>Lead</subject><subject>letter</subject><subject>Marine</subject><subject>Minerals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1LAzEQBuAgCtYq-BMWEdHD6mSTJtmjlPoBggf1vMymk7qym61JW_Tfm1I_QA-eQpKHdyYZxg45nHMQ5kJoAyOJsMUGXGqVS2X0NhsAFCYHI9Qu24vxBQBGXMsBe5i8zSk0HfkFthmtmil5S5nrQ7Z4pqwPzazxWe-ylnCakQ-NfV7jLJ3a3q8ozNIu7zCsXYezDuM-23HYRjr4XIfs6WryOL7J7-6vb8eXdzlKgEWOui5LSj0XtVBOuFJwIE7COV27GhDqVFI6w5EXha2l1hyctVMDZJx2KIbsZJM7D_3rkuKi6ppoqW3RU7-MlVACUqj4F3JVam60SvDoF3zpl8GnR1QFSKmE5Dqh0w2yoY8xkKvm6QMxvFccqvUMqq8ZJHr8mYfRYusCetvEb1-YEtRolNjZhsV042cUfsr-ifwAxeKTEA</recordid><startdate>19951102</startdate><enddate>19951102</enddate><creator>Brenan, James M.</creator><creator>Shaw, Henry F.</creator><creator>Ryerson, Frederick J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19951102</creationdate><title>Experimental evidence for the origin of lead enrichment in convergent-margin magmas</title><author>Brenan, James M. ; Shaw, Henry F. ; Ryerson, Frederick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-a7b99e0382b36f3f9310e1e3ff7bfb0a0bead4f81a122cb47710fccd80e8f7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Basalt</topic><topic>Continental crust</topic><topic>Crystalline rocks</topic><topic>Dehydration</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Humanities and Social Sciences</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Lava</topic><topic>Lead</topic><topic>letter</topic><topic>Marine</topic><topic>Minerals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brenan, James M.</creatorcontrib><creatorcontrib>Shaw, Henry F.</creatorcontrib><creatorcontrib>Ryerson, Frederick J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brenan, James M.</au><au>Shaw, Henry F.</au><au>Ryerson, Frederick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence for the origin of lead enrichment in convergent-margin magmas</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1995-11-02</date><risdate>1995</risdate><volume>378</volume><issue>6552</issue><spage>54</spage><epage>56</epage><pages>54-56</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>IT has been proposed
1–5
that the low Ce/Pb ratio of subduction-related basalts, relative to their oceanic counterparts, arises by the preferential transfer of lead to the mantle wedge (overlying the subducting slab) by non-magmatic processes. Fluxing of the mantle wedge by low-Ce/Pb fluids, generated by the dehydration of sub-ducted oceanic crust, is one mechanism favoured for this process (see, for example, ref. 5). Here we report the results of a series of high-pressure experiments, which confirm that low-Ce/Pb fluids coexist with the dominant mineral phases (garnet and clinopyroxene) produced during high-pressure dehydration of altered basalt. Our results show that the production of subduction-zone magmas from mantle sources fluxed by basalt-derived fluid is a mechanism by which relatively lead-rich, cerium-poor, mantle-derived material is added to the continents. The lead enrichment of the Earth's continental crust is thus a continuing process occurring at conver-gent margins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/378054a0</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1995-11, Vol.378 (6552), p.54-56 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_36309313 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Basalt Continental crust Crystalline rocks Dehydration Earth sciences Earth, ocean, space Exact sciences and technology Geology Humanities and Social Sciences Igneous and metamorphic rocks petrology, volcanic processes, magmas Isotope geochemistry Isotope geochemistry. Geochronology Lava Lead letter Marine Minerals multidisciplinary Physics Science Science (multidisciplinary) |
title | Experimental evidence for the origin of lead enrichment in convergent-margin magmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20for%20the%20origin%20of%20lead%20enrichment%20in%20convergent-margin%20magmas&rft.jtitle=Nature%20(London)&rft.au=Brenan,%20James%20M.&rft.date=1995-11-02&rft.volume=378&rft.issue=6552&rft.spage=54&rft.epage=56&rft.pages=54-56&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/378054a0&rft_dat=%3Cproquest_cross%3E8655853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204463417&rft_id=info:pmid/&rfr_iscdi=true |