Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology

Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2009-07, Vol.30 (7), p.1007-1015
Hauptverfasser: Švab, Iztok, Musil, Vojko, Pustak, Anđela, Šmit, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 7
container_start_page 1007
container_title Polymer composites
container_volume 30
creator Švab, Iztok
Musil, Vojko
Pustak, Anđela
Šmit, Ivan
description Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.
doi_str_mv 10.1002/pc.20649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36298096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793471201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</originalsourceid><addsrcrecordid>eNp10U2LFDEQBuBGFBxXwZ8QBMVLj_nozsdRx3VdWHQQZY4hm1Q7WdOdNul27au_3Iwz7kHwVJenXqp4q-opwWuCMX012jXFvFH3qhVpG1njlqv71QpTQWvJlHhYPcr5pkjCOVtVv3YxBJOnOPgJ6gR-6GKy4NAYwzKmOC4BBkA29mPMhWTUR-c7X8Stn_ZoiD8goB4mE0K0B3q-_VT4Yb2HlNfoco22e5MB5SnNdpoTIDO4EpPGfQzx6_K4etCZkOHJaZ5VX96df968r68-XlxuXl_VlimiakIcYcZhwhsucONoQyi0pMOMtPLagiTWdYK0IKVwQlHWCu4YV3BthDWCsbPqxTG3vPV9hjzp3mcL5f0B4pw141RJrHiBz_6BN3FOQ7lNE6UIx1jJgl4ekU0x5wSdHpPvTVo0wfrQhB6t_tNEoc9PeSZbE7pkBuvznS9NSCZbUVx9dLc-wPLfPL3d_M09eZ8n-HnnTfqmuWCi1bsPF5o2Ddm9fSP0hv0Gkpmmtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199160098</pqid></control><display><type>article</type><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><source>Wiley Online Library All Journals</source><creator>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</creator><creatorcontrib>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</creatorcontrib><description>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.20649</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer composites, 2009-07, Vol.30 (7), p.1007-1015</ispartof><rights>Copyright © 2008 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</citedby><cites>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.20649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.20649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21683857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Švab, Iztok</creatorcontrib><creatorcontrib>Musil, Vojko</creatorcontrib><creatorcontrib>Pustak, Anđela</creatorcontrib><creatorcontrib>Šmit, Ivan</creatorcontrib><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10U2LFDEQBuBGFBxXwZ8QBMVLj_nozsdRx3VdWHQQZY4hm1Q7WdOdNul27au_3Iwz7kHwVJenXqp4q-opwWuCMX012jXFvFH3qhVpG1njlqv71QpTQWvJlHhYPcr5pkjCOVtVv3YxBJOnOPgJ6gR-6GKy4NAYwzKmOC4BBkA29mPMhWTUR-c7X8Stn_ZoiD8goB4mE0K0B3q-_VT4Yb2HlNfoco22e5MB5SnNdpoTIDO4EpPGfQzx6_K4etCZkOHJaZ5VX96df968r68-XlxuXl_VlimiakIcYcZhwhsucONoQyi0pMOMtPLagiTWdYK0IKVwQlHWCu4YV3BthDWCsbPqxTG3vPV9hjzp3mcL5f0B4pw141RJrHiBz_6BN3FOQ7lNE6UIx1jJgl4ekU0x5wSdHpPvTVo0wfrQhB6t_tNEoc9PeSZbE7pkBuvznS9NSCZbUVx9dLc-wPLfPL3d_M09eZ8n-HnnTfqmuWCi1bsPF5o2Ddm9fSP0hv0Gkpmmtg</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Švab, Iztok</creator><creator>Musil, Vojko</creator><creator>Pustak, Anđela</creator><creator>Šmit, Ivan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200907</creationdate><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><author>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Švab, Iztok</creatorcontrib><creatorcontrib>Musil, Vojko</creatorcontrib><creatorcontrib>Pustak, Anđela</creatorcontrib><creatorcontrib>Šmit, Ivan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Švab, Iztok</au><au>Musil, Vojko</au><au>Pustak, Anđela</au><au>Šmit, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2009-07</date><risdate>2009</risdate><volume>30</volume><issue>7</issue><spage>1007</spage><epage>1015</epage><pages>1007-1015</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.20649</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2009-07, Vol.30 (7), p.1007-1015
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_miscellaneous_36298096
source Wiley Online Library All Journals
subjects Applied sciences
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wollastonite-reinforced%20polypropylene%20composites%20modified%20with%20novel%20metallocene%20EPR%20copolymers.%20I.%20Phase%20structure%20and%20morphology&rft.jtitle=Polymer%20composites&rft.au=%C5%A0vab,%20Iztok&rft.date=2009-07&rft.volume=30&rft.issue=7&rft.spage=1007&rft.epage=1015&rft.pages=1007-1015&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.20649&rft_dat=%3Cproquest_cross%3E1793471201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199160098&rft_id=info:pmid/&rfr_iscdi=true