Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology
Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and different...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2009-07, Vol.30 (7), p.1007-1015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 7 |
container_start_page | 1007 |
container_title | Polymer composites |
container_volume | 30 |
creator | Švab, Iztok Musil, Vojko Pustak, Anđela Šmit, Ivan |
description | Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers. |
doi_str_mv | 10.1002/pc.20649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36298096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793471201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</originalsourceid><addsrcrecordid>eNp10U2LFDEQBuBGFBxXwZ8QBMVLj_nozsdRx3VdWHQQZY4hm1Q7WdOdNul27au_3Iwz7kHwVJenXqp4q-opwWuCMX012jXFvFH3qhVpG1njlqv71QpTQWvJlHhYPcr5pkjCOVtVv3YxBJOnOPgJ6gR-6GKy4NAYwzKmOC4BBkA29mPMhWTUR-c7X8Stn_ZoiD8goB4mE0K0B3q-_VT4Yb2HlNfoco22e5MB5SnNdpoTIDO4EpPGfQzx6_K4etCZkOHJaZ5VX96df968r68-XlxuXl_VlimiakIcYcZhwhsucONoQyi0pMOMtPLagiTWdYK0IKVwQlHWCu4YV3BthDWCsbPqxTG3vPV9hjzp3mcL5f0B4pw141RJrHiBz_6BN3FOQ7lNE6UIx1jJgl4ekU0x5wSdHpPvTVo0wfrQhB6t_tNEoc9PeSZbE7pkBuvznS9NSCZbUVx9dLc-wPLfPL3d_M09eZ8n-HnnTfqmuWCi1bsPF5o2Ddm9fSP0hv0Gkpmmtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199160098</pqid></control><display><type>article</type><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><source>Wiley Online Library All Journals</source><creator>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</creator><creatorcontrib>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</creatorcontrib><description>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.20649</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer composites, 2009-07, Vol.30 (7), p.1007-1015</ispartof><rights>Copyright © 2008 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</citedby><cites>FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.20649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.20649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21683857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Švab, Iztok</creatorcontrib><creatorcontrib>Musil, Vojko</creatorcontrib><creatorcontrib>Pustak, Anđela</creatorcontrib><creatorcontrib>Šmit, Ivan</creatorcontrib><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10U2LFDEQBuBGFBxXwZ8QBMVLj_nozsdRx3VdWHQQZY4hm1Q7WdOdNul27au_3Iwz7kHwVJenXqp4q-opwWuCMX012jXFvFH3qhVpG1njlqv71QpTQWvJlHhYPcr5pkjCOVtVv3YxBJOnOPgJ6gR-6GKy4NAYwzKmOC4BBkA29mPMhWTUR-c7X8Stn_ZoiD8goB4mE0K0B3q-_VT4Yb2HlNfoco22e5MB5SnNdpoTIDO4EpPGfQzx6_K4etCZkOHJaZ5VX96df968r68-XlxuXl_VlimiakIcYcZhwhsucONoQyi0pMOMtPLagiTWdYK0IKVwQlHWCu4YV3BthDWCsbPqxTG3vPV9hjzp3mcL5f0B4pw141RJrHiBz_6BN3FOQ7lNE6UIx1jJgl4ekU0x5wSdHpPvTVo0wfrQhB6t_tNEoc9PeSZbE7pkBuvznS9NSCZbUVx9dLc-wPLfPL3d_M09eZ8n-HnnTfqmuWCi1bsPF5o2Ddm9fSP0hv0Gkpmmtg</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Švab, Iztok</creator><creator>Musil, Vojko</creator><creator>Pustak, Anđela</creator><creator>Šmit, Ivan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200907</creationdate><title>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</title><author>Švab, Iztok ; Musil, Vojko ; Pustak, Anđela ; Šmit, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3919-11d13ad01646704d2412e51f03158bce81cdf715e887d7923576d369eba7ca733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Švab, Iztok</creatorcontrib><creatorcontrib>Musil, Vojko</creatorcontrib><creatorcontrib>Pustak, Anđela</creatorcontrib><creatorcontrib>Šmit, Ivan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Švab, Iztok</au><au>Musil, Vojko</au><au>Pustak, Anđela</au><au>Šmit, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2009-07</date><risdate>2009</risdate><volume>30</volume><issue>7</issue><spage>1007</spage><epage>1015</epage><pages>1007-1015</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane‐parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane‐parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core‐shell morphology) because of constitution similarity of P‐E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.20649</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2009-07, Vol.30 (7), p.1007-1015 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_miscellaneous_36298096 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Composites Exact sciences and technology Forms of application and semi-finished materials Polymer industry, paints, wood Technology of polymers |
title | Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. I. Phase structure and morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wollastonite-reinforced%20polypropylene%20composites%20modified%20with%20novel%20metallocene%20EPR%20copolymers.%20I.%20Phase%20structure%20and%20morphology&rft.jtitle=Polymer%20composites&rft.au=%C5%A0vab,%20Iztok&rft.date=2009-07&rft.volume=30&rft.issue=7&rft.spage=1007&rft.epage=1015&rft.pages=1007-1015&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.20649&rft_dat=%3Cproquest_cross%3E1793471201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199160098&rft_id=info:pmid/&rfr_iscdi=true |