Automatic cleaning and segmentation of web images based on colors to build learning databases
This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one cons...
Gespeichert in:
Veröffentlicht in: | Image and vision computing 2010-03, Vol.28 (3), p.317-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 3 |
container_start_page | 317 |
container_title | Image and vision computing |
container_volume | 28 |
creator | Millet, Christophe Bloch, Isabelle Hède, Patrick Moëllic, Pierre-Alain |
description | This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one considers all images to classify pixels into two sets: object pixels and background pixels. The second method segments images individually by trying to find a central object. The final segmentation is obtained by intersecting the results from both. The segmentation results are then used to re-rank images and display a clean set of images illustrating the query. The algorithm is tested on various queries for animals, natural and man-made objects, and results are discussed, showing that the obtained segmentation results are suitable for object learning. |
doi_str_mv | 10.1016/j.imavis.2009.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36292052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885609001309</els_id><sourcerecordid>36292052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-4eeb2c7bfe03dfc0c0035b1313ff8c91fba0e8f2f820817ac7415668d65d5a0e3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlOUPOPjErWHsNI57QaoqNqkSFzgiy7HHlaskLnZSxN_jEs6cZjRvGb1HyA2DggETd7vCd_rgU8EBlgWIAqA6ITMmaz6XrJSnZAZc5F1W4pxcpLQDgBrq5Yx8rMYhdHrwhpoWde_7LdW9pQm3HfZDBkJPg6Nf2ND8ZIuJNjqhpflsQhtiokOgzehbS7M-_hpYPegjK12RM6fbhNd_85K8Pz68rZ_nm9enl_VqMzdcimG-QGy4qRuHUFpnwACUVcNKVjonzZK5RgNKx53kIFmtTb1glRDSispWGSovye3ku4_hc8Q0qM4ng22rewxjUqXgSw4Vz8TFRDQxpBTRqX3MseK3YqCOXaqdmrpUxy4VCJW7zLL7SYY5xMFjVMl47A1aH9EMygb_v8EPxkiAtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36292052</pqid></control><display><type>article</type><title>Automatic cleaning and segmentation of web images based on colors to build learning databases</title><source>Elsevier ScienceDirect Journals</source><creator>Millet, Christophe ; Bloch, Isabelle ; Hède, Patrick ; Moëllic, Pierre-Alain</creator><creatorcontrib>Millet, Christophe ; Bloch, Isabelle ; Hède, Patrick ; Moëllic, Pierre-Alain</creatorcontrib><description>This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one considers all images to classify pixels into two sets: object pixels and background pixels. The second method segments images individually by trying to find a central object. The final segmentation is obtained by intersecting the results from both. The segmentation results are then used to re-rank images and display a clean set of images illustrating the query. The algorithm is tested on various queries for animals, natural and man-made objects, and results are discussed, showing that the obtained segmentation results are suitable for object learning.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2009.06.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic segmentation ; Semantics ; Sorting images ; Web images</subject><ispartof>Image and vision computing, 2010-03, Vol.28 (3), p.317-328</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-4eeb2c7bfe03dfc0c0035b1313ff8c91fba0e8f2f820817ac7415668d65d5a0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0262885609001309$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Millet, Christophe</creatorcontrib><creatorcontrib>Bloch, Isabelle</creatorcontrib><creatorcontrib>Hède, Patrick</creatorcontrib><creatorcontrib>Moëllic, Pierre-Alain</creatorcontrib><title>Automatic cleaning and segmentation of web images based on colors to build learning databases</title><title>Image and vision computing</title><description>This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one considers all images to classify pixels into two sets: object pixels and background pixels. The second method segments images individually by trying to find a central object. The final segmentation is obtained by intersecting the results from both. The segmentation results are then used to re-rank images and display a clean set of images illustrating the query. The algorithm is tested on various queries for animals, natural and man-made objects, and results are discussed, showing that the obtained segmentation results are suitable for object learning.</description><subject>Automatic segmentation</subject><subject>Semantics</subject><subject>Sorting images</subject><subject>Web images</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlOUPOPjErWHsNI57QaoqNqkSFzgiy7HHlaskLnZSxN_jEs6cZjRvGb1HyA2DggETd7vCd_rgU8EBlgWIAqA6ITMmaz6XrJSnZAZc5F1W4pxcpLQDgBrq5Yx8rMYhdHrwhpoWde_7LdW9pQm3HfZDBkJPg6Nf2ND8ZIuJNjqhpflsQhtiokOgzehbS7M-_hpYPegjK12RM6fbhNd_85K8Pz68rZ_nm9enl_VqMzdcimG-QGy4qRuHUFpnwACUVcNKVjonzZK5RgNKx53kIFmtTb1glRDSispWGSovye3ku4_hc8Q0qM4ng22rewxjUqXgSw4Vz8TFRDQxpBTRqX3MseK3YqCOXaqdmrpUxy4VCJW7zLL7SYY5xMFjVMl47A1aH9EMygb_v8EPxkiAtQ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Millet, Christophe</creator><creator>Bloch, Isabelle</creator><creator>Hède, Patrick</creator><creator>Moëllic, Pierre-Alain</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Automatic cleaning and segmentation of web images based on colors to build learning databases</title><author>Millet, Christophe ; Bloch, Isabelle ; Hède, Patrick ; Moëllic, Pierre-Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-4eeb2c7bfe03dfc0c0035b1313ff8c91fba0e8f2f820817ac7415668d65d5a0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automatic segmentation</topic><topic>Semantics</topic><topic>Sorting images</topic><topic>Web images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millet, Christophe</creatorcontrib><creatorcontrib>Bloch, Isabelle</creatorcontrib><creatorcontrib>Hède, Patrick</creatorcontrib><creatorcontrib>Moëllic, Pierre-Alain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millet, Christophe</au><au>Bloch, Isabelle</au><au>Hède, Patrick</au><au>Moëllic, Pierre-Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic cleaning and segmentation of web images based on colors to build learning databases</atitle><jtitle>Image and vision computing</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>28</volume><issue>3</issue><spage>317</spage><epage>328</epage><pages>317-328</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>This article proposes a method to segment Internet images, that is, a group of images corresponding to a specific object (the query) containing a significant amount of irrelevant images. The segmentation algorithm we propose is a combination of two distinct methods based on color. The first one considers all images to classify pixels into two sets: object pixels and background pixels. The second method segments images individually by trying to find a central object. The final segmentation is obtained by intersecting the results from both. The segmentation results are then used to re-rank images and display a clean set of images illustrating the query. The algorithm is tested on various queries for animals, natural and man-made objects, and results are discussed, showing that the obtained segmentation results are suitable for object learning.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2009.06.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-8856 |
ispartof | Image and vision computing, 2010-03, Vol.28 (3), p.317-328 |
issn | 0262-8856 1872-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_36292052 |
source | Elsevier ScienceDirect Journals |
subjects | Automatic segmentation Semantics Sorting images Web images |
title | Automatic cleaning and segmentation of web images based on colors to build learning databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20cleaning%20and%20segmentation%20of%20web%20images%20based%20on%20colors%20to%20build%20learning%20databases&rft.jtitle=Image%20and%20vision%20computing&rft.au=Millet,%20Christophe&rft.date=2010-03-01&rft.volume=28&rft.issue=3&rft.spage=317&rft.epage=328&rft.pages=317-328&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2009.06.005&rft_dat=%3Cproquest_cross%3E36292052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36292052&rft_id=info:pmid/&rft_els_id=S0262885609001309&rfr_iscdi=true |