SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission

In this paper, we propose an algorithm for lossy adaptive encoding of digital three-dimensional (3D) images based on singular value decomposition (SVD). This encoding allows us to design algorithms for progressive transmission and reconstruction of the 3D image, for one or several selected regions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2010-03, Vol.28 (3), p.449-457
Hauptverfasser: Baeza, Ismael, Verdoy, José-Antonio, Villanueva, Rafael-Jacinto, Villanueva-Oller, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 449
container_title Image and vision computing
container_volume 28
creator Baeza, Ismael
Verdoy, José-Antonio
Villanueva, Rafael-Jacinto
Villanueva-Oller, Javier
description In this paper, we propose an algorithm for lossy adaptive encoding of digital three-dimensional (3D) images based on singular value decomposition (SVD). This encoding allows us to design algorithms for progressive transmission and reconstruction of the 3D image, for one or several selected regions of interest (ROI) avoiding redundancy in data transmission. The main characteristic of the proposed algorithms is that the ROIs can be selected during the transmission process and it is not necessary to re-encode the image again to transmit the data corresponding to the selected ROI. An example with a data set of a CT scan consisting of 93 parallel slices where we added an implanted tumor (the ROI in this example) and a comparative with JPEG2000 are given.
doi_str_mv 10.1016/j.imavis.2009.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36258216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0262885609001528</els_id><sourcerecordid>36258216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7efba84f9628686bfafd1933bb061b427e0b0946e63854cdb9f27f85a290c1ae3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaP-hCq-7sjiRHkjeFkvQRCIQ-t0K2R0HBsVPJCeTvq5Cuu5oZmDtz7yHklkHOgMn7de43du9jzgHKHFQOUJyREdOKZ5oJfU5GwGXq9URekqsY1wCgQJUj8vbxPaNtH-OB2sZuB79Hil3dN75b0d5RMaONX_nBtjT9WGGkrg_0fTmn29CvAsZ4VAzBdnHj09B31-TC2TbizV8dk6_np8_pa7ZYvsynj4usFkINmUJXWV24UnIttaycdQ0rhagqkKwquEKooCwkSqEnRd1UpePK6YnlJdTMohiTu9PdZORnh3EwyUCNbWs77HfRCMknmjOZFovTYh1SzoDObEPKEg6GgTnyM2tz4meO_Awok_gl2cNJhinE3mMwsfYJDTY-YD2Ypvf_H_gFDiF7jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36258216</pqid></control><display><type>article</type><title>SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baeza, Ismael ; Verdoy, José-Antonio ; Villanueva, Rafael-Jacinto ; Villanueva-Oller, Javier</creator><creatorcontrib>Baeza, Ismael ; Verdoy, José-Antonio ; Villanueva, Rafael-Jacinto ; Villanueva-Oller, Javier</creatorcontrib><description>In this paper, we propose an algorithm for lossy adaptive encoding of digital three-dimensional (3D) images based on singular value decomposition (SVD). This encoding allows us to design algorithms for progressive transmission and reconstruction of the 3D image, for one or several selected regions of interest (ROI) avoiding redundancy in data transmission. The main characteristic of the proposed algorithms is that the ROIs can be selected during the transmission process and it is not necessary to re-encode the image again to transmit the data corresponding to the selected ROI. An example with a data set of a CT scan consisting of 93 parallel slices where we added an implanted tumor (the ROI in this example) and a comparative with JPEG2000 are given.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/j.imavis.2009.07.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D digital images ; Lossy progressive transmission ; Region of interest (ROI) transmission ; Singular value decomposition encoding</subject><ispartof>Image and vision computing, 2010-03, Vol.28 (3), p.449-457</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7efba84f9628686bfafd1933bb061b427e0b0946e63854cdb9f27f85a290c1ae3</citedby><cites>FETCH-LOGICAL-c337t-7efba84f9628686bfafd1933bb061b427e0b0946e63854cdb9f27f85a290c1ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.imavis.2009.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Baeza, Ismael</creatorcontrib><creatorcontrib>Verdoy, José-Antonio</creatorcontrib><creatorcontrib>Villanueva, Rafael-Jacinto</creatorcontrib><creatorcontrib>Villanueva-Oller, Javier</creatorcontrib><title>SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission</title><title>Image and vision computing</title><description>In this paper, we propose an algorithm for lossy adaptive encoding of digital three-dimensional (3D) images based on singular value decomposition (SVD). This encoding allows us to design algorithms for progressive transmission and reconstruction of the 3D image, for one or several selected regions of interest (ROI) avoiding redundancy in data transmission. The main characteristic of the proposed algorithms is that the ROIs can be selected during the transmission process and it is not necessary to re-encode the image again to transmit the data corresponding to the selected ROI. An example with a data set of a CT scan consisting of 93 parallel slices where we added an implanted tumor (the ROI in this example) and a comparative with JPEG2000 are given.</description><subject>3D digital images</subject><subject>Lossy progressive transmission</subject><subject>Region of interest (ROI) transmission</subject><subject>Singular value decomposition encoding</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaP-hCq-7sjiRHkjeFkvQRCIQ-t0K2R0HBsVPJCeTvq5Cuu5oZmDtz7yHklkHOgMn7de43du9jzgHKHFQOUJyREdOKZ5oJfU5GwGXq9URekqsY1wCgQJUj8vbxPaNtH-OB2sZuB79Hil3dN75b0d5RMaONX_nBtjT9WGGkrg_0fTmn29CvAsZ4VAzBdnHj09B31-TC2TbizV8dk6_np8_pa7ZYvsynj4usFkINmUJXWV24UnIttaycdQ0rhagqkKwquEKooCwkSqEnRd1UpePK6YnlJdTMohiTu9PdZORnh3EwyUCNbWs77HfRCMknmjOZFovTYh1SzoDObEPKEg6GgTnyM2tz4meO_Awok_gl2cNJhinE3mMwsfYJDTY-YD2Ypvf_H_gFDiF7jw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Baeza, Ismael</creator><creator>Verdoy, José-Antonio</creator><creator>Villanueva, Rafael-Jacinto</creator><creator>Villanueva-Oller, Javier</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission</title><author>Baeza, Ismael ; Verdoy, José-Antonio ; Villanueva, Rafael-Jacinto ; Villanueva-Oller, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7efba84f9628686bfafd1933bb061b427e0b0946e63854cdb9f27f85a290c1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D digital images</topic><topic>Lossy progressive transmission</topic><topic>Region of interest (ROI) transmission</topic><topic>Singular value decomposition encoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baeza, Ismael</creatorcontrib><creatorcontrib>Verdoy, José-Antonio</creatorcontrib><creatorcontrib>Villanueva, Rafael-Jacinto</creatorcontrib><creatorcontrib>Villanueva-Oller, Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baeza, Ismael</au><au>Verdoy, José-Antonio</au><au>Villanueva, Rafael-Jacinto</au><au>Villanueva-Oller, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission</atitle><jtitle>Image and vision computing</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>28</volume><issue>3</issue><spage>449</spage><epage>457</epage><pages>449-457</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>In this paper, we propose an algorithm for lossy adaptive encoding of digital three-dimensional (3D) images based on singular value decomposition (SVD). This encoding allows us to design algorithms for progressive transmission and reconstruction of the 3D image, for one or several selected regions of interest (ROI) avoiding redundancy in data transmission. The main characteristic of the proposed algorithms is that the ROIs can be selected during the transmission process and it is not necessary to re-encode the image again to transmit the data corresponding to the selected ROI. An example with a data set of a CT scan consisting of 93 parallel slices where we added an implanted tumor (the ROI in this example) and a comparative with JPEG2000 are given.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.imavis.2009.07.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 2010-03, Vol.28 (3), p.449-457
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_36258216
source Elsevier ScienceDirect Journals Complete
subjects 3D digital images
Lossy progressive transmission
Region of interest (ROI) transmission
Singular value decomposition encoding
title SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SVD%20lossy%20adaptive%20encoding%20of%203D%20digital%20images%20for%20ROI%20progressive%20transmission&rft.jtitle=Image%20and%20vision%20computing&rft.au=Baeza,%20Ismael&rft.date=2010-03-01&rft.volume=28&rft.issue=3&rft.spage=449&rft.epage=457&rft.pages=449-457&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/j.imavis.2009.07.004&rft_dat=%3Cproquest_cross%3E36258216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36258216&rft_id=info:pmid/&rft_els_id=S0262885609001528&rfr_iscdi=true