Simulation of muscle characteristics using an electromagnetic actuator
Abstract To accurately predict human body motion during a vehicle crash, active and passive characteristics of a muscle must be expressed. The crash test dummy presently used only expresses the passive characteristics of a muscle by using springs, so it has limited accuracy in predicting human body...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2007-03, Vol.221 (3), p.373-383 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 3 |
container_start_page | 373 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 221 |
creator | Park, I H Lee, I H Yeon, J H Chang, I B Han, D C |
description | Abstract
To accurately predict human body motion during a vehicle crash, active and passive characteristics of a muscle must be expressed. The crash test dummy presently used only expresses the passive characteristics of a muscle by using springs, so it has limited accuracy in predicting human body motion of current crash test dummies. In this paper, a muscle activation system composed of an electromagnetic actuator and a tensile spring is proposed to resolve such limitation of the current crash test dummy. The proposed actuator reproduces the active characteristics of a muscle. Because the flux path of the actuator is designed by reluctance path modulation using an electromagnet and two permanent magnets, the actuator improves upon non-linearity and power consumption of a conventional electromagnetic actuator. The tensile spring is adopted to resolve the short moving range of the actuator, to increase the bandwidth limit of the muscle activation system, and to reproduce the passive characteristics of a muscle. Tests reproducing the force-length and force-velocity characteristics of a muscle were carried out to verify the performance of the developed muscle activation system. The experimental results showed that the muscle activation system successfully reproduced the force-length and force-velocity characteristics of a muscle. |
doi_str_mv | 10.1243/0954406JMES299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36228188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_0954406JMES299</sage_id><sourcerecordid>36228188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-519d0bc0f955bff68a9744216b1d9b684c5f2eff12dec9bce6ab8c98d803d1f13</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQprMwRSCwoxT47jj2iquVDRQyFOXIcu6RK4mInQ_89rsoACMQtHt7nTjofQucETwgweoNlxhjmj0-zJUh5gEaAGUlBCnqIRrswjSkco5MQ1jgW8GyE5su6HRrV165LnE3aIejGJPpNeaV74-vQ1zokQ6i7VaK6xDRG9961atWZmCQRDap3_hQdWdUEc_b5jtHrfPYyvU8Xz3cP09tFqinL-zQjssKlxlZmWWktF0rmjAHhJalkyQXTmQVjLYHKaFlqw1UptBSVwLQiltAxutrP3Xj3PpjQF20dtGka1Rk3hIJyAEGE-B_GD8gJ0AgvfsC1G3wXlyiAMok5yXfo8i9EJJaUQpZDVJO90t6F4I0tNr5uld8WBBe7ExXfTxQbrvcNQa3Ml5G_6w9O95BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234906173</pqid></control><display><type>article</type><title>Simulation of muscle characteristics using an electromagnetic actuator</title><source>Access via SAGE</source><creator>Park, I H ; Lee, I H ; Yeon, J H ; Chang, I B ; Han, D C</creator><creatorcontrib>Park, I H ; Lee, I H ; Yeon, J H ; Chang, I B ; Han, D C</creatorcontrib><description>Abstract
To accurately predict human body motion during a vehicle crash, active and passive characteristics of a muscle must be expressed. The crash test dummy presently used only expresses the passive characteristics of a muscle by using springs, so it has limited accuracy in predicting human body motion of current crash test dummies. In this paper, a muscle activation system composed of an electromagnetic actuator and a tensile spring is proposed to resolve such limitation of the current crash test dummy. The proposed actuator reproduces the active characteristics of a muscle. Because the flux path of the actuator is designed by reluctance path modulation using an electromagnet and two permanent magnets, the actuator improves upon non-linearity and power consumption of a conventional electromagnetic actuator. The tensile spring is adopted to resolve the short moving range of the actuator, to increase the bandwidth limit of the muscle activation system, and to reproduce the passive characteristics of a muscle. Tests reproducing the force-length and force-velocity characteristics of a muscle were carried out to verify the performance of the developed muscle activation system. The experimental results showed that the muscle activation system successfully reproduced the force-length and force-velocity characteristics of a muscle.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1243/0954406JMES299</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Activation ; Automobile safety ; Crash test dummies ; Dummies ; Flux ; Human body ; Human motion ; Linearity ; Modulation ; Movement ; Muscular system ; Nonlinearity ; Permanent magnets ; Power consumption ; Reluctance ; Simulation ; Springs ; Traffic accidents & safety</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2007-03, Vol.221 (3), p.373-383</ispartof><rights>2007 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-519d0bc0f955bff68a9744216b1d9b684c5f2eff12dec9bce6ab8c98d803d1f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/0954406JMES299$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/0954406JMES299$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Park, I H</creatorcontrib><creatorcontrib>Lee, I H</creatorcontrib><creatorcontrib>Yeon, J H</creatorcontrib><creatorcontrib>Chang, I B</creatorcontrib><creatorcontrib>Han, D C</creatorcontrib><title>Simulation of muscle characteristics using an electromagnetic actuator</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Abstract
To accurately predict human body motion during a vehicle crash, active and passive characteristics of a muscle must be expressed. The crash test dummy presently used only expresses the passive characteristics of a muscle by using springs, so it has limited accuracy in predicting human body motion of current crash test dummies. In this paper, a muscle activation system composed of an electromagnetic actuator and a tensile spring is proposed to resolve such limitation of the current crash test dummy. The proposed actuator reproduces the active characteristics of a muscle. Because the flux path of the actuator is designed by reluctance path modulation using an electromagnet and two permanent magnets, the actuator improves upon non-linearity and power consumption of a conventional electromagnetic actuator. The tensile spring is adopted to resolve the short moving range of the actuator, to increase the bandwidth limit of the muscle activation system, and to reproduce the passive characteristics of a muscle. Tests reproducing the force-length and force-velocity characteristics of a muscle were carried out to verify the performance of the developed muscle activation system. The experimental results showed that the muscle activation system successfully reproduced the force-length and force-velocity characteristics of a muscle.</description><subject>Activation</subject><subject>Automobile safety</subject><subject>Crash test dummies</subject><subject>Dummies</subject><subject>Flux</subject><subject>Human body</subject><subject>Human motion</subject><subject>Linearity</subject><subject>Modulation</subject><subject>Movement</subject><subject>Muscular system</subject><subject>Nonlinearity</subject><subject>Permanent magnets</subject><subject>Power consumption</subject><subject>Reluctance</subject><subject>Simulation</subject><subject>Springs</subject><subject>Traffic accidents & safety</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0T1PwzAQBmALgUQprMwRSCwoxT47jj2iquVDRQyFOXIcu6RK4mInQ_89rsoACMQtHt7nTjofQucETwgweoNlxhjmj0-zJUh5gEaAGUlBCnqIRrswjSkco5MQ1jgW8GyE5su6HRrV165LnE3aIejGJPpNeaV74-vQ1zokQ6i7VaK6xDRG9961atWZmCQRDap3_hQdWdUEc_b5jtHrfPYyvU8Xz3cP09tFqinL-zQjssKlxlZmWWktF0rmjAHhJalkyQXTmQVjLYHKaFlqw1UptBSVwLQiltAxutrP3Xj3PpjQF20dtGka1Rk3hIJyAEGE-B_GD8gJ0AgvfsC1G3wXlyiAMok5yXfo8i9EJJaUQpZDVJO90t6F4I0tNr5uld8WBBe7ExXfTxQbrvcNQa3Ml5G_6w9O95BQ</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Park, I H</creator><creator>Lee, I H</creator><creator>Yeon, J H</creator><creator>Chang, I B</creator><creator>Han, D C</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070301</creationdate><title>Simulation of muscle characteristics using an electromagnetic actuator</title><author>Park, I H ; Lee, I H ; Yeon, J H ; Chang, I B ; Han, D C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-519d0bc0f955bff68a9744216b1d9b684c5f2eff12dec9bce6ab8c98d803d1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activation</topic><topic>Automobile safety</topic><topic>Crash test dummies</topic><topic>Dummies</topic><topic>Flux</topic><topic>Human body</topic><topic>Human motion</topic><topic>Linearity</topic><topic>Modulation</topic><topic>Movement</topic><topic>Muscular system</topic><topic>Nonlinearity</topic><topic>Permanent magnets</topic><topic>Power consumption</topic><topic>Reluctance</topic><topic>Simulation</topic><topic>Springs</topic><topic>Traffic accidents & safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, I H</creatorcontrib><creatorcontrib>Lee, I H</creatorcontrib><creatorcontrib>Yeon, J H</creatorcontrib><creatorcontrib>Chang, I B</creatorcontrib><creatorcontrib>Han, D C</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, I H</au><au>Lee, I H</au><au>Yeon, J H</au><au>Chang, I B</au><au>Han, D C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of muscle characteristics using an electromagnetic actuator</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>221</volume><issue>3</issue><spage>373</spage><epage>383</epage><pages>373-383</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Abstract
To accurately predict human body motion during a vehicle crash, active and passive characteristics of a muscle must be expressed. The crash test dummy presently used only expresses the passive characteristics of a muscle by using springs, so it has limited accuracy in predicting human body motion of current crash test dummies. In this paper, a muscle activation system composed of an electromagnetic actuator and a tensile spring is proposed to resolve such limitation of the current crash test dummy. The proposed actuator reproduces the active characteristics of a muscle. Because the flux path of the actuator is designed by reluctance path modulation using an electromagnet and two permanent magnets, the actuator improves upon non-linearity and power consumption of a conventional electromagnetic actuator. The tensile spring is adopted to resolve the short moving range of the actuator, to increase the bandwidth limit of the muscle activation system, and to reproduce the passive characteristics of a muscle. Tests reproducing the force-length and force-velocity characteristics of a muscle were carried out to verify the performance of the developed muscle activation system. The experimental results showed that the muscle activation system successfully reproduced the force-length and force-velocity characteristics of a muscle.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/0954406JMES299</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2007-03, Vol.221 (3), p.373-383 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_miscellaneous_36228188 |
source | Access via SAGE |
subjects | Activation Automobile safety Crash test dummies Dummies Flux Human body Human motion Linearity Modulation Movement Muscular system Nonlinearity Permanent magnets Power consumption Reluctance Simulation Springs Traffic accidents & safety |
title | Simulation of muscle characteristics using an electromagnetic actuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20muscle%20characteristics%20using%20an%20electromagnetic%20actuator&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Park,%20I%20H&rft.date=2007-03-01&rft.volume=221&rft.issue=3&rft.spage=373&rft.epage=383&rft.pages=373-383&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1243/0954406JMES299&rft_dat=%3Cproquest_cross%3E36228188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234906173&rft_id=info:pmid/&rft_sage_id=10.1243_0954406JMES299&rfr_iscdi=true |