Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR
Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protei...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1987-03, Vol.235 (4793), p.1200-1204 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1204 |
---|---|
container_issue | 4793 |
container_start_page | 1200 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 235 |
creator | Schaefer, Jacob Kramer, Karl J. Garbow, Joel R. Jacob, Gary S. Stejskal, Edward O. Hopkins, Theodore L. Speirs, Roy D. |
description | Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines. |
doi_str_mv | 10.1126/science.3823880 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36202358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1698249</jstor_id><sourcerecordid>1698249</sourcerecordid><originalsourceid>FETCH-LOGICAL-j178t-ba1b6a48917520be5d37392dbdad2164d9a6870a52f264e76830dfb6cb0980ad3</originalsourceid><addsrcrecordid>eNqFz71LAzEYBvAgCtbq7OIQpLhdzccll7iV86tQK1hdHDxylxRSr0m95IYi_d8N6uTi9PLw_HjgBeAUozHGhF-GxhrXmDEVhAqB9sAAI8kySRDdBwOEKM8EKtghOAphhVDqJB2A10nn1yraBpadDyGbWfceoHVw6oJpIiz71LXmCl6bmLL1DtZbuPCt1dkiqmjg6O0T092ohMrp78B2ozmcPzwdg4OlaoM5-b1D8HJ781zeZ7PHu2k5mWUrXIiY1QrXXOVC4oIRVBumaUEl0bVWmmCea6m4KJBiZEl4bgouKNLLmjc1kgIpTYfg4md30_mP3oRYrW1oTNsqZ3wfKsoJIpSJfyHBJBckzxM8_wNXvu9ceiIZyigmlCR09oNWIfqu2nR2rbpthblMG5J-AfCbdmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213531232</pqid></control><display><type>article</type><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</creator><creatorcontrib>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</creatorcontrib><description>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.3823880</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Carbon ; Catechols ; Chitin ; Insect cuticle ; Insects ; Integument ; Lipids ; Nitrogen ; Nuclear magnetic resonance ; Plant cuticle ; Sclerotization</subject><ispartof>Science (American Association for the Advancement of Science), 1987-03, Vol.235 (4793), p.1200-1204</ispartof><rights>Copyright 1987 The American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Mar 6, 1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1698249$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1698249$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Schaefer, Jacob</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Garbow, Joel R.</creatorcontrib><creatorcontrib>Jacob, Gary S.</creatorcontrib><creatorcontrib>Stejskal, Edward O.</creatorcontrib><creatorcontrib>Hopkins, Theodore L.</creatorcontrib><creatorcontrib>Speirs, Roy D.</creatorcontrib><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><title>Science (American Association for the Advancement of Science)</title><description>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</description><subject>Carbon</subject><subject>Catechols</subject><subject>Chitin</subject><subject>Insect cuticle</subject><subject>Insects</subject><subject>Integument</subject><subject>Lipids</subject><subject>Nitrogen</subject><subject>Nuclear magnetic resonance</subject><subject>Plant cuticle</subject><subject>Sclerotization</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFz71LAzEYBvAgCtbq7OIQpLhdzccll7iV86tQK1hdHDxylxRSr0m95IYi_d8N6uTi9PLw_HjgBeAUozHGhF-GxhrXmDEVhAqB9sAAI8kySRDdBwOEKM8EKtghOAphhVDqJB2A10nn1yraBpadDyGbWfceoHVw6oJpIiz71LXmCl6bmLL1DtZbuPCt1dkiqmjg6O0T092ohMrp78B2ozmcPzwdg4OlaoM5-b1D8HJ781zeZ7PHu2k5mWUrXIiY1QrXXOVC4oIRVBumaUEl0bVWmmCea6m4KJBiZEl4bgouKNLLmjc1kgIpTYfg4md30_mP3oRYrW1oTNsqZ3wfKsoJIpSJfyHBJBckzxM8_wNXvu9ceiIZyigmlCR09oNWIfqu2nR2rbpthblMG5J-AfCbdmc</recordid><startdate>19870306</startdate><enddate>19870306</enddate><creator>Schaefer, Jacob</creator><creator>Kramer, Karl J.</creator><creator>Garbow, Joel R.</creator><creator>Jacob, Gary S.</creator><creator>Stejskal, Edward O.</creator><creator>Hopkins, Theodore L.</creator><creator>Speirs, Roy D.</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19870306</creationdate><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><author>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j178t-ba1b6a48917520be5d37392dbdad2164d9a6870a52f264e76830dfb6cb0980ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Carbon</topic><topic>Catechols</topic><topic>Chitin</topic><topic>Insect cuticle</topic><topic>Insects</topic><topic>Integument</topic><topic>Lipids</topic><topic>Nitrogen</topic><topic>Nuclear magnetic resonance</topic><topic>Plant cuticle</topic><topic>Sclerotization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaefer, Jacob</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Garbow, Joel R.</creatorcontrib><creatorcontrib>Jacob, Gary S.</creatorcontrib><creatorcontrib>Stejskal, Edward O.</creatorcontrib><creatorcontrib>Hopkins, Theodore L.</creatorcontrib><creatorcontrib>Speirs, Roy D.</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaefer, Jacob</au><au>Kramer, Karl J.</au><au>Garbow, Joel R.</au><au>Jacob, Gary S.</au><au>Stejskal, Edward O.</au><au>Hopkins, Theodore L.</au><au>Speirs, Roy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>1987-03-06</date><risdate>1987</risdate><volume>235</volume><issue>4793</issue><spage>1200</spage><epage>1204</epage><pages>1200-1204</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.3823880</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1987-03, Vol.235 (4793), p.1200-1204 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_36202358 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Carbon Catechols Chitin Insect cuticle Insects Integument Lipids Nitrogen Nuclear magnetic resonance Plant cuticle Sclerotization |
title | Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromatic%20Cross-Links%20in%20Insect%20Cuticle:%20Detection%20by%20Solid-State%20$%5E%7B13%7D$C%20and%20$%5E%7B15%7D$N%20NMR&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Schaefer,%20Jacob&rft.date=1987-03-06&rft.volume=235&rft.issue=4793&rft.spage=1200&rft.epage=1204&rft.pages=1200-1204&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.3823880&rft_dat=%3Cjstor_proqu%3E1698249%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213531232&rft_id=info:pmid/&rft_jstor_id=1698249&rfr_iscdi=true |