Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR

Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1987-03, Vol.235 (4793), p.1200-1204
Hauptverfasser: Schaefer, Jacob, Kramer, Karl J., Garbow, Joel R., Jacob, Gary S., Stejskal, Edward O., Hopkins, Theodore L., Speirs, Roy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1204
container_issue 4793
container_start_page 1200
container_title Science (American Association for the Advancement of Science)
container_volume 235
creator Schaefer, Jacob
Kramer, Karl J.
Garbow, Joel R.
Jacob, Gary S.
Stejskal, Edward O.
Hopkins, Theodore L.
Speirs, Roy D.
description Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.
doi_str_mv 10.1126/science.3823880
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36202358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1698249</jstor_id><sourcerecordid>1698249</sourcerecordid><originalsourceid>FETCH-LOGICAL-j178t-ba1b6a48917520be5d37392dbdad2164d9a6870a52f264e76830dfb6cb0980ad3</originalsourceid><addsrcrecordid>eNqFz71LAzEYBvAgCtbq7OIQpLhdzccll7iV86tQK1hdHDxylxRSr0m95IYi_d8N6uTi9PLw_HjgBeAUozHGhF-GxhrXmDEVhAqB9sAAI8kySRDdBwOEKM8EKtghOAphhVDqJB2A10nn1yraBpadDyGbWfceoHVw6oJpIiz71LXmCl6bmLL1DtZbuPCt1dkiqmjg6O0T092ohMrp78B2ozmcPzwdg4OlaoM5-b1D8HJ781zeZ7PHu2k5mWUrXIiY1QrXXOVC4oIRVBumaUEl0bVWmmCea6m4KJBiZEl4bgouKNLLmjc1kgIpTYfg4md30_mP3oRYrW1oTNsqZ3wfKsoJIpSJfyHBJBckzxM8_wNXvu9ceiIZyigmlCR09oNWIfqu2nR2rbpthblMG5J-AfCbdmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213531232</pqid></control><display><type>article</type><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</creator><creatorcontrib>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</creatorcontrib><description>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.3823880</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Carbon ; Catechols ; Chitin ; Insect cuticle ; Insects ; Integument ; Lipids ; Nitrogen ; Nuclear magnetic resonance ; Plant cuticle ; Sclerotization</subject><ispartof>Science (American Association for the Advancement of Science), 1987-03, Vol.235 (4793), p.1200-1204</ispartof><rights>Copyright 1987 The American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Mar 6, 1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1698249$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1698249$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Schaefer, Jacob</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Garbow, Joel R.</creatorcontrib><creatorcontrib>Jacob, Gary S.</creatorcontrib><creatorcontrib>Stejskal, Edward O.</creatorcontrib><creatorcontrib>Hopkins, Theodore L.</creatorcontrib><creatorcontrib>Speirs, Roy D.</creatorcontrib><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><title>Science (American Association for the Advancement of Science)</title><description>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</description><subject>Carbon</subject><subject>Catechols</subject><subject>Chitin</subject><subject>Insect cuticle</subject><subject>Insects</subject><subject>Integument</subject><subject>Lipids</subject><subject>Nitrogen</subject><subject>Nuclear magnetic resonance</subject><subject>Plant cuticle</subject><subject>Sclerotization</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFz71LAzEYBvAgCtbq7OIQpLhdzccll7iV86tQK1hdHDxylxRSr0m95IYi_d8N6uTi9PLw_HjgBeAUozHGhF-GxhrXmDEVhAqB9sAAI8kySRDdBwOEKM8EKtghOAphhVDqJB2A10nn1yraBpadDyGbWfceoHVw6oJpIiz71LXmCl6bmLL1DtZbuPCt1dkiqmjg6O0T092ohMrp78B2ozmcPzwdg4OlaoM5-b1D8HJ781zeZ7PHu2k5mWUrXIiY1QrXXOVC4oIRVBumaUEl0bVWmmCea6m4KJBiZEl4bgouKNLLmjc1kgIpTYfg4md30_mP3oRYrW1oTNsqZ3wfKsoJIpSJfyHBJBckzxM8_wNXvu9ceiIZyigmlCR09oNWIfqu2nR2rbpthblMG5J-AfCbdmc</recordid><startdate>19870306</startdate><enddate>19870306</enddate><creator>Schaefer, Jacob</creator><creator>Kramer, Karl J.</creator><creator>Garbow, Joel R.</creator><creator>Jacob, Gary S.</creator><creator>Stejskal, Edward O.</creator><creator>Hopkins, Theodore L.</creator><creator>Speirs, Roy D.</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19870306</creationdate><title>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</title><author>Schaefer, Jacob ; Kramer, Karl J. ; Garbow, Joel R. ; Jacob, Gary S. ; Stejskal, Edward O. ; Hopkins, Theodore L. ; Speirs, Roy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j178t-ba1b6a48917520be5d37392dbdad2164d9a6870a52f264e76830dfb6cb0980ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Carbon</topic><topic>Catechols</topic><topic>Chitin</topic><topic>Insect cuticle</topic><topic>Insects</topic><topic>Integument</topic><topic>Lipids</topic><topic>Nitrogen</topic><topic>Nuclear magnetic resonance</topic><topic>Plant cuticle</topic><topic>Sclerotization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaefer, Jacob</creatorcontrib><creatorcontrib>Kramer, Karl J.</creatorcontrib><creatorcontrib>Garbow, Joel R.</creatorcontrib><creatorcontrib>Jacob, Gary S.</creatorcontrib><creatorcontrib>Stejskal, Edward O.</creatorcontrib><creatorcontrib>Hopkins, Theodore L.</creatorcontrib><creatorcontrib>Speirs, Roy D.</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaefer, Jacob</au><au>Kramer, Karl J.</au><au>Garbow, Joel R.</au><au>Jacob, Gary S.</au><au>Stejskal, Edward O.</au><au>Hopkins, Theodore L.</au><au>Speirs, Roy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>1987-03-06</date><risdate>1987</risdate><volume>235</volume><issue>4793</issue><spage>1200</spage><epage>1204</epage><pages>1200-1204</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their cross-linking by quinonoid derivatives of catecholamines.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.3823880</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1987-03, Vol.235 (4793), p.1200-1204
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_36202358
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Carbon
Catechols
Chitin
Insect cuticle
Insects
Integument
Lipids
Nitrogen
Nuclear magnetic resonance
Plant cuticle
Sclerotization
title Aromatic Cross-Links in Insect Cuticle: Detection by Solid-State $^{13}$C and $^{15}$N NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromatic%20Cross-Links%20in%20Insect%20Cuticle:%20Detection%20by%20Solid-State%20$%5E%7B13%7D$C%20and%20$%5E%7B15%7D$N%20NMR&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Schaefer,%20Jacob&rft.date=1987-03-06&rft.volume=235&rft.issue=4793&rft.spage=1200&rft.epage=1204&rft.pages=1200-1204&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.3823880&rft_dat=%3Cjstor_proqu%3E1698249%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213531232&rft_id=info:pmid/&rft_jstor_id=1698249&rfr_iscdi=true