Purification of metallurgical-grade silicon in fractional melting process
The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2009-12, Vol.312 (1), p.146-148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 146 |
container_title | Journal of crystal growth |
container_volume | 312 |
creator | Lee, Woosoon Yoon, Wooyoung Park, Choonghwan |
description | The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction. |
doi_str_mv | 10.1016/j.jcrysgro.2009.09.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36167634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024809008872</els_id><sourcerecordid>36167634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</originalsourceid><addsrcrecordid>eNqFkEtPxCAUhYnRxHH0L5hudNfKo9B2p5n4mGQSXeiaMHBpaJh2hNbEfy_NjG6FG0jgOxzuQeia4IJgIu66otPhO7ZhKCjGTTEXxydoQeqK5RxjeooWaaU5pmV9ji5i7DBOSoIXaP02BWedVqMb-myw2Q5G5f0U2nTm8zYoA1l03ul07frMBqVnVPlE-tH1bbYPg4YYL9GZVT7C1XFfoo-nx_fVS755fV6vHja5ZhUbc24aUVJOWaXpNk1cK6JsRbniNQNmt4Y1hgpTc1U2phZgSQm1NqKiFCtasSW6PbybfD8niKPcuajBe9XDMEXJBBGVYGUCxQHUYYgxgJX74HYqfEuC5Zyc7ORvcnJOTs7FcRLeHB1UTCGklnvt4p-apsF5-u0S3R84SO1-OQgyage9BuMC6FGawf1n9QMoh4iE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36167634</pqid></control><display><type>article</type><title>Purification of metallurgical-grade silicon in fractional melting process</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</creator><creatorcontrib>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</creatorcontrib><description>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2009.09.050</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Fractional melting ; A1. Purification ; A1. Refining ; A1. Wetness ; Applied sciences ; B2. Metallurgical grade silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Materials science ; Methods of crystal growth; physics of crystal growth ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solubility, segregation, and mixing; phase separation</subject><ispartof>Journal of crystal growth, 2009-12, Vol.312 (1), p.146-148</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</citedby><cites>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024809008872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22225558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Woosoon</creatorcontrib><creatorcontrib>Yoon, Wooyoung</creatorcontrib><creatorcontrib>Park, Choonghwan</creatorcontrib><title>Purification of metallurgical-grade silicon in fractional melting process</title><title>Journal of crystal growth</title><description>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</description><subject>A1. Fractional melting</subject><subject>A1. Purification</subject><subject>A1. Refining</subject><subject>A1. Wetness</subject><subject>Applied sciences</subject><subject>B2. Metallurgical grade silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solubility, segregation, and mixing; phase separation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPxCAUhYnRxHH0L5hudNfKo9B2p5n4mGQSXeiaMHBpaJh2hNbEfy_NjG6FG0jgOxzuQeia4IJgIu66otPhO7ZhKCjGTTEXxydoQeqK5RxjeooWaaU5pmV9ji5i7DBOSoIXaP02BWedVqMb-myw2Q5G5f0U2nTm8zYoA1l03ul07frMBqVnVPlE-tH1bbYPg4YYL9GZVT7C1XFfoo-nx_fVS755fV6vHja5ZhUbc24aUVJOWaXpNk1cK6JsRbniNQNmt4Y1hgpTc1U2phZgSQm1NqKiFCtasSW6PbybfD8niKPcuajBe9XDMEXJBBGVYGUCxQHUYYgxgJX74HYqfEuC5Zyc7ORvcnJOTs7FcRLeHB1UTCGklnvt4p-apsF5-u0S3R84SO1-OQgyage9BuMC6FGawf1n9QMoh4iE</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Lee, Woosoon</creator><creator>Yoon, Wooyoung</creator><creator>Park, Choonghwan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>Purification of metallurgical-grade silicon in fractional melting process</title><author>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>A1. Fractional melting</topic><topic>A1. Purification</topic><topic>A1. Refining</topic><topic>A1. Wetness</topic><topic>Applied sciences</topic><topic>B2. Metallurgical grade silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solubility, segregation, and mixing; phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Woosoon</creatorcontrib><creatorcontrib>Yoon, Wooyoung</creatorcontrib><creatorcontrib>Park, Choonghwan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Woosoon</au><au>Yoon, Wooyoung</au><au>Park, Choonghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purification of metallurgical-grade silicon in fractional melting process</atitle><jtitle>Journal of crystal growth</jtitle><date>2009-12-15</date><risdate>2009</risdate><volume>312</volume><issue>1</issue><spage>146</spage><epage>148</epage><pages>146-148</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2009.09.050</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2009-12, Vol.312 (1), p.146-148 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_36167634 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Fractional melting A1. Purification A1. Refining A1. Wetness Applied sciences B2. Metallurgical grade silicon Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Energy Equations of state, phase equilibria, and phase transitions Exact sciences and technology Growth from melts zone melting and refining Materials science Methods of crystal growth physics of crystal growth Natural energy Photovoltaic conversion Physics Solar cells. Photoelectrochemical cells Solar energy Solubility, segregation, and mixing phase separation |
title | Purification of metallurgical-grade silicon in fractional melting process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purification%20of%20metallurgical-grade%20silicon%20in%20fractional%20melting%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lee,%20Woosoon&rft.date=2009-12-15&rft.volume=312&rft.issue=1&rft.spage=146&rft.epage=148&rft.pages=146-148&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2009.09.050&rft_dat=%3Cproquest_cross%3E36167634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36167634&rft_id=info:pmid/&rft_els_id=S0022024809008872&rfr_iscdi=true |