Purification of metallurgical-grade silicon in fractional melting process

The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2009-12, Vol.312 (1), p.146-148
Hauptverfasser: Lee, Woosoon, Yoon, Wooyoung, Park, Choonghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 146
container_title Journal of crystal growth
container_volume 312
creator Lee, Woosoon
Yoon, Wooyoung
Park, Choonghwan
description The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.
doi_str_mv 10.1016/j.jcrysgro.2009.09.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36167634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024809008872</els_id><sourcerecordid>36167634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</originalsourceid><addsrcrecordid>eNqFkEtPxCAUhYnRxHH0L5hudNfKo9B2p5n4mGQSXeiaMHBpaJh2hNbEfy_NjG6FG0jgOxzuQeia4IJgIu66otPhO7ZhKCjGTTEXxydoQeqK5RxjeooWaaU5pmV9ji5i7DBOSoIXaP02BWedVqMb-myw2Q5G5f0U2nTm8zYoA1l03ul07frMBqVnVPlE-tH1bbYPg4YYL9GZVT7C1XFfoo-nx_fVS755fV6vHja5ZhUbc24aUVJOWaXpNk1cK6JsRbniNQNmt4Y1hgpTc1U2phZgSQm1NqKiFCtasSW6PbybfD8niKPcuajBe9XDMEXJBBGVYGUCxQHUYYgxgJX74HYqfEuC5Zyc7ORvcnJOTs7FcRLeHB1UTCGklnvt4p-apsF5-u0S3R84SO1-OQgyage9BuMC6FGawf1n9QMoh4iE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36167634</pqid></control><display><type>article</type><title>Purification of metallurgical-grade silicon in fractional melting process</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</creator><creatorcontrib>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</creatorcontrib><description>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2009.09.050</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Fractional melting ; A1. Purification ; A1. Refining ; A1. Wetness ; Applied sciences ; B2. Metallurgical grade silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Materials science ; Methods of crystal growth; physics of crystal growth ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solubility, segregation, and mixing; phase separation</subject><ispartof>Journal of crystal growth, 2009-12, Vol.312 (1), p.146-148</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</citedby><cites>FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024809008872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22225558$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Woosoon</creatorcontrib><creatorcontrib>Yoon, Wooyoung</creatorcontrib><creatorcontrib>Park, Choonghwan</creatorcontrib><title>Purification of metallurgical-grade silicon in fractional melting process</title><title>Journal of crystal growth</title><description>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</description><subject>A1. Fractional melting</subject><subject>A1. Purification</subject><subject>A1. Refining</subject><subject>A1. Wetness</subject><subject>Applied sciences</subject><subject>B2. Metallurgical grade silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solubility, segregation, and mixing; phase separation</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPxCAUhYnRxHH0L5hudNfKo9B2p5n4mGQSXeiaMHBpaJh2hNbEfy_NjG6FG0jgOxzuQeia4IJgIu66otPhO7ZhKCjGTTEXxydoQeqK5RxjeooWaaU5pmV9ji5i7DBOSoIXaP02BWedVqMb-myw2Q5G5f0U2nTm8zYoA1l03ul07frMBqVnVPlE-tH1bbYPg4YYL9GZVT7C1XFfoo-nx_fVS755fV6vHja5ZhUbc24aUVJOWaXpNk1cK6JsRbniNQNmt4Y1hgpTc1U2phZgSQm1NqKiFCtasSW6PbybfD8niKPcuajBe9XDMEXJBBGVYGUCxQHUYYgxgJX74HYqfEuC5Zyc7ORvcnJOTs7FcRLeHB1UTCGklnvt4p-apsF5-u0S3R84SO1-OQgyage9BuMC6FGawf1n9QMoh4iE</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Lee, Woosoon</creator><creator>Yoon, Wooyoung</creator><creator>Park, Choonghwan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>Purification of metallurgical-grade silicon in fractional melting process</title><author>Lee, Woosoon ; Yoon, Wooyoung ; Park, Choonghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5d96425237c2b2b208a1af725a583e3fbd39d26d85a49d86ef14e8cd67220a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>A1. Fractional melting</topic><topic>A1. Purification</topic><topic>A1. Refining</topic><topic>A1. Wetness</topic><topic>Applied sciences</topic><topic>B2. Metallurgical grade silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solubility, segregation, and mixing; phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Woosoon</creatorcontrib><creatorcontrib>Yoon, Wooyoung</creatorcontrib><creatorcontrib>Park, Choonghwan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Woosoon</au><au>Yoon, Wooyoung</au><au>Park, Choonghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Purification of metallurgical-grade silicon in fractional melting process</atitle><jtitle>Journal of crystal growth</jtitle><date>2009-12-15</date><risdate>2009</risdate><volume>312</volume><issue>1</issue><spage>146</spage><epage>148</epage><pages>146-148</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The fractional melting process involves heating an alloy within its liquid–solid region, while simultaneously ejecting liquid from the solid–liquid mixture (the cake). The extent of purification obtained is comparable to that obtained in multi-pass zone refining. A new fractional melting process, in which the centrifugal force is used for separating the liquid from the cake, was developed and applied to the purification of metallurgical grade Si (MG-Si). The major impurities in MG-Si such as Fe, Ti, Al, and Cu can significantly degrade the efficiency of solar cells. So it is important to remove these metal elements from MG-Si to obtain high-quality silicon. Since these elements have low segregation coefficients in silicon, high purification is possible through the fractional melting process. By applying the fractional melting method, a mean refining ratio of 93% with a wetness of 0.038 was achieved during the refining of 2N-Si. A further increase in the refining ratio can be realized by either controlling the processing parameters or reducing the solid fraction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2009.09.050</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2009-12, Vol.312 (1), p.146-148
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_36167634
source Elsevier ScienceDirect Journals
subjects A1. Fractional melting
A1. Purification
A1. Refining
A1. Wetness
Applied sciences
B2. Metallurgical grade silicon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Energy
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Growth from melts
zone melting and refining
Materials science
Methods of crystal growth
physics of crystal growth
Natural energy
Photovoltaic conversion
Physics
Solar cells. Photoelectrochemical cells
Solar energy
Solubility, segregation, and mixing
phase separation
title Purification of metallurgical-grade silicon in fractional melting process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Purification%20of%20metallurgical-grade%20silicon%20in%20fractional%20melting%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Lee,%20Woosoon&rft.date=2009-12-15&rft.volume=312&rft.issue=1&rft.spage=146&rft.epage=148&rft.pages=146-148&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2009.09.050&rft_dat=%3Cproquest_cross%3E36167634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36167634&rft_id=info:pmid/&rft_els_id=S0022024809008872&rfr_iscdi=true