Prediction of the film thickness distribution and pattern change during film insert thermoforming

Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2009-11, Vol.49 (11), p.2195-2203
Hauptverfasser: Kim, Gugyong, Lee, Kwango, Kang, Sungsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2203
container_issue 11
container_start_page 2195
container_title Polymer engineering and science
container_volume 49
creator Kim, Gugyong
Lee, Kwango
Kang, Sungsu
description Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can change, depending on the product configuration, and further, the pattern of the decorated film may change. Therefore, this article attempts to quantify the changes in the thickness and in the pattern of the decorated film during the FIM process. G'Sell's viscoelastic constitutive law was adopted to describe the rheological behavior of polymer film. A constant‐velocity uniaxial tensile test at high temperature, which is a new method proposed in this research, was used to obtain the rheological parameters. We also suggested a visual method for predicting pattern change, which was validated by comparing analytical results with those of real products. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers
doi_str_mv 10.1002/pen.21467
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36161843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A211808189</galeid><sourcerecordid>A211808189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5717-f99e81b82317d8153f5c1b3e3cebab71d887a604ec6e6bb2beb3825ab2f49a063</originalsourceid><addsrcrecordid>eNp1kl9r1TAYxosoeJxe-A2KoiDYs_xpm_RyjDkH8zh0IngTkvRtT7Y2PSYp27790vU4PHIkFwm8v-chefIkyWuMlhghcrgBuyQ4L9mTZIGLnGekpPnTZIEQJRnlnD9PXnh_hSJLi2qRyAsHtdHBDDYdmjSsIW1M18eD0dcWvE9r44MzanxApK3TjQwBnE31WtoW0np0xrazylgPLkwurh-awfVx8jJ51sjOw6vtfpD8-HRyefw5O_96enZ8dJ7pgmGWNVUFHCtOKGY1xwVtCo0VBapBScVwzTmTJcpBl1AqRRQoykkhFWnySqKSHiTvZ9-NG36P4IPojdfQddLCMHpBS1xintMIvvkHvBpGZ-PdBMG8LKqYW4TezlArOxDGNkNwUk-O4ohgzBHHvIpUtodqwYKT3WAhhgK7_HIPH1cNvdF7BR92BJEJcBtaOXovzr5_22U__sWq0Zvp_-KXmHYd_CzZZ63d4L2DRmyc6aW7ExiJqUsidkk8dCmy77aRSa9l1zhptfGPAkIQKyiboj2cuZv4jrv_G4qLk9Uf522CsWVw-6iQ7lrEKSvEz9WpuPyCWE7JSvyi9yM45Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218659154</pqid></control><display><type>article</type><title>Prediction of the film thickness distribution and pattern change during film insert thermoforming</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Gugyong ; Lee, Kwango ; Kang, Sungsu</creator><creatorcontrib>Kim, Gugyong ; Lee, Kwango ; Kang, Sungsu</creatorcontrib><description>Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can change, depending on the product configuration, and further, the pattern of the decorated film may change. Therefore, this article attempts to quantify the changes in the thickness and in the pattern of the decorated film during the FIM process. G'Sell's viscoelastic constitutive law was adopted to describe the rheological behavior of polymer film. A constant‐velocity uniaxial tensile test at high temperature, which is a new method proposed in this research, was used to obtain the rheological parameters. We also suggested a visual method for predicting pattern change, which was validated by comparing analytical results with those of real products. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21467</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Coating, metallization, dyeing ; Dielectric films ; Exact sciences and technology ; Machinery and processing ; Materials ; Mechanical properties ; Metal products ; Miscellaneous ; Moulding ; Plastics ; Polymer films ; Polymer industry, paints, wood ; Production processes ; Rheology ; Technology of polymers ; Thermal properties ; Thermoforming ; Thickness measurement ; Thin films ; Viscoelasticity</subject><ispartof>Polymer engineering and science, 2009-11, Vol.49 (11), p.2195-2203</ispartof><rights>Copyright © 2009 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2009 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5717-f99e81b82317d8153f5c1b3e3cebab71d887a604ec6e6bb2beb3825ab2f49a063</citedby><cites>FETCH-LOGICAL-c5717-f99e81b82317d8153f5c1b3e3cebab71d887a604ec6e6bb2beb3825ab2f49a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21467$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21467$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22075373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Gugyong</creatorcontrib><creatorcontrib>Lee, Kwango</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><title>Prediction of the film thickness distribution and pattern change during film insert thermoforming</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can change, depending on the product configuration, and further, the pattern of the decorated film may change. Therefore, this article attempts to quantify the changes in the thickness and in the pattern of the decorated film during the FIM process. G'Sell's viscoelastic constitutive law was adopted to describe the rheological behavior of polymer film. A constant‐velocity uniaxial tensile test at high temperature, which is a new method proposed in this research, was used to obtain the rheological parameters. We also suggested a visual method for predicting pattern change, which was validated by comparing analytical results with those of real products. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Coating, metallization, dyeing</subject><subject>Dielectric films</subject><subject>Exact sciences and technology</subject><subject>Machinery and processing</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal products</subject><subject>Miscellaneous</subject><subject>Moulding</subject><subject>Plastics</subject><subject>Polymer films</subject><subject>Polymer industry, paints, wood</subject><subject>Production processes</subject><subject>Rheology</subject><subject>Technology of polymers</subject><subject>Thermal properties</subject><subject>Thermoforming</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Viscoelasticity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl9r1TAYxosoeJxe-A2KoiDYs_xpm_RyjDkH8zh0IngTkvRtT7Y2PSYp27790vU4PHIkFwm8v-chefIkyWuMlhghcrgBuyQ4L9mTZIGLnGekpPnTZIEQJRnlnD9PXnh_hSJLi2qRyAsHtdHBDDYdmjSsIW1M18eD0dcWvE9r44MzanxApK3TjQwBnE31WtoW0np0xrazylgPLkwurh-awfVx8jJ51sjOw6vtfpD8-HRyefw5O_96enZ8dJ7pgmGWNVUFHCtOKGY1xwVtCo0VBapBScVwzTmTJcpBl1AqRRQoykkhFWnySqKSHiTvZ9-NG36P4IPojdfQddLCMHpBS1xintMIvvkHvBpGZ-PdBMG8LKqYW4TezlArOxDGNkNwUk-O4ohgzBHHvIpUtodqwYKT3WAhhgK7_HIPH1cNvdF7BR92BJEJcBtaOXovzr5_22U__sWq0Zvp_-KXmHYd_CzZZ63d4L2DRmyc6aW7ExiJqUsidkk8dCmy77aRSa9l1zhptfGPAkIQKyiboj2cuZv4jrv_G4qLk9Uf522CsWVw-6iQ7lrEKSvEz9WpuPyCWE7JSvyi9yM45Lw</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Kim, Gugyong</creator><creator>Lee, Kwango</creator><creator>Kang, Sungsu</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200911</creationdate><title>Prediction of the film thickness distribution and pattern change during film insert thermoforming</title><author>Kim, Gugyong ; Lee, Kwango ; Kang, Sungsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5717-f99e81b82317d8153f5c1b3e3cebab71d887a604ec6e6bb2beb3825ab2f49a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Coating, metallization, dyeing</topic><topic>Dielectric films</topic><topic>Exact sciences and technology</topic><topic>Machinery and processing</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal products</topic><topic>Miscellaneous</topic><topic>Moulding</topic><topic>Plastics</topic><topic>Polymer films</topic><topic>Polymer industry, paints, wood</topic><topic>Production processes</topic><topic>Rheology</topic><topic>Technology of polymers</topic><topic>Thermal properties</topic><topic>Thermoforming</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gugyong</creatorcontrib><creatorcontrib>Lee, Kwango</creatorcontrib><creatorcontrib>Kang, Sungsu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gugyong</au><au>Lee, Kwango</au><au>Kang, Sungsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the film thickness distribution and pattern change during film insert thermoforming</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2009-11</date><risdate>2009</risdate><volume>49</volume><issue>11</issue><spage>2195</spage><epage>2203</epage><pages>2195-2203</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can change, depending on the product configuration, and further, the pattern of the decorated film may change. Therefore, this article attempts to quantify the changes in the thickness and in the pattern of the decorated film during the FIM process. G'Sell's viscoelastic constitutive law was adopted to describe the rheological behavior of polymer film. A constant‐velocity uniaxial tensile test at high temperature, which is a new method proposed in this research, was used to obtain the rheological parameters. We also suggested a visual method for predicting pattern change, which was validated by comparing analytical results with those of real products. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21467</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2009-11, Vol.49 (11), p.2195-2203
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_36161843
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Coating, metallization, dyeing
Dielectric films
Exact sciences and technology
Machinery and processing
Materials
Mechanical properties
Metal products
Miscellaneous
Moulding
Plastics
Polymer films
Polymer industry, paints, wood
Production processes
Rheology
Technology of polymers
Thermal properties
Thermoforming
Thickness measurement
Thin films
Viscoelasticity
title Prediction of the film thickness distribution and pattern change during film insert thermoforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20film%20thickness%20distribution%20and%20pattern%20change%20during%20film%20insert%20thermoforming&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Kim,%20Gugyong&rft.date=2009-11&rft.volume=49&rft.issue=11&rft.spage=2195&rft.epage=2203&rft.pages=2195-2203&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21467&rft_dat=%3Cgale_proqu%3EA211808189%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218659154&rft_id=info:pmid/&rft_galeid=A211808189&rfr_iscdi=true