Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis
The crystallization kinetics of a solid oxide fuel cell sealing glass were studied using a new isothermal differential thermal analysis (DTA) method. The weight fraction of glass crystallized after an isothermal heat treatment was determined from the DTA crystallization peak area and the crystalliza...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2008-10, Vol.91 (10), p.3235-3239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3239 |
---|---|
container_issue | 10 |
container_start_page | 3235 |
container_title | Journal of the American Ceramic Society |
container_volume | 91 |
creator | Zhang, Teng Brow, Richard K. Reis, Signo T. Ray, Chandra S. |
description | The crystallization kinetics of a solid oxide fuel cell sealing glass were studied using a new isothermal differential thermal analysis (DTA) method. The weight fraction of glass crystallized after an isothermal heat treatment was determined from the DTA crystallization peak area and the crystallization kinetic parameters were determined using the classical Johnson–Mehl–Avrami equation. The glass, an alkaline earth–zinc–silicate composition, crystallized in the temperature range between 740° and 950°C. The activation energy for crystallization varied with glass particle size and decreased from 570±25 to 457±30 kJ/mol as the average particle size decreased from 425–500 to ∼10 μm. The activation energy for crystallization, E, increased from 520±20 to ∼600±20 kJ/mol when glass particles (45–53 μm) were mechanically mixed with 10 vol% of micrometer‐sized Ni or YSZ powders. This increase in E reflects the effect of a second phase in composite seal systems, but is independent of the chemical nature of the additives. The measured values of the Avrami exponent (n) indicate that surface crystallization is the dominant crystallization mechanism for this glass, particularly for small particle sizes, e.g. n=0.9±0.1 for ∼10 μm. |
doi_str_mv | 10.1111/j.1551-2916.2008.02661.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36157246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36157246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4741-2cd3a2ccd85bc9041641e159972991bbcca5d85a7242579517111f436a16a74c3</originalsourceid><addsrcrecordid>eNqNkUFv0zAUxyMEEmXjO1hIIC4JthPb8QlV3Vo2FSaxARIX69VxwMVNhp2Khk_P61r1wAHhi2359356z_8sI4wWDNebdcGEYDnXTBac0rqgXEpW7B5lk9PD42xCKeW5qjl9mj1LaY1XputqkjVXqR--u7iBQGZxTAOE4H_D4PuO9C0BctsH35CbnW8cmW8dUi4Ecusg-O4bWQRIiaxGcuHb1kXXDR5Fd0fhtIMwJp_OsycthOSeH_ez7NP88m72Ll_eLK5m02VuK1Vhq7YpgVvb1GJlNa2YrJhjQmvFtWarlbUg8A0Ur7hQWjCFH9BWpQQmQVW2PMteHbz3sf-5dWkwG58s9gud67fJlJIJLJYIvv4nyGjNOWVKaERf_IWu-23EwZLhTGkua1UiVB8gG_uUomvNffQbiCOazD4mszb7NMw-DbOPyTzEZHZY-vLoh2QhtBE669OpnlNsAudE7u2B--WDG__bb66ns8uHMxryg8Gnwe1OBog_jFSlEubLh4VZfv74_mL-VRhe_gH5V7Ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217926873</pqid></control><display><type>article</type><title>Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis</title><source>Access via Wiley Online Library</source><creator>Zhang, Teng ; Brow, Richard K. ; Reis, Signo T. ; Ray, Chandra S.</creator><creatorcontrib>Zhang, Teng ; Brow, Richard K. ; Reis, Signo T. ; Ray, Chandra S.</creatorcontrib><description>The crystallization kinetics of a solid oxide fuel cell sealing glass were studied using a new isothermal differential thermal analysis (DTA) method. The weight fraction of glass crystallized after an isothermal heat treatment was determined from the DTA crystallization peak area and the crystallization kinetic parameters were determined using the classical Johnson–Mehl–Avrami equation. The glass, an alkaline earth–zinc–silicate composition, crystallized in the temperature range between 740° and 950°C. The activation energy for crystallization varied with glass particle size and decreased from 570±25 to 457±30 kJ/mol as the average particle size decreased from 425–500 to ∼10 μm. The activation energy for crystallization, E, increased from 520±20 to ∼600±20 kJ/mol when glass particles (45–53 μm) were mechanically mixed with 10 vol% of micrometer‐sized Ni or YSZ powders. This increase in E reflects the effect of a second phase in composite seal systems, but is independent of the chemical nature of the additives. The measured values of the Avrami exponent (n) indicate that surface crystallization is the dominant crystallization mechanism for this glass, particularly for small particle sizes, e.g. n=0.9±0.1 for ∼10 μm.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2008.02661.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Activation energy ; Applied sciences ; Building materials. Ceramics. Glasses ; Chemical industry and chemicals ; Crystallization ; Differential thermal analysis ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Glass ; Glass-ceramics ; Glasses ; Mathematical analysis ; Particle size ; Reaction kinetics ; Sealing ; Solid oxide fuel cells ; Structure, analysis, properties ; Temperature</subject><ispartof>Journal of the American Ceramic Society, 2008-10, Vol.91 (10), p.3235-3239</ispartof><rights>2008 The American Ceramic Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Ceramic Society Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4741-2cd3a2ccd85bc9041641e159972991bbcca5d85a7242579517111f436a16a74c3</citedby><cites>FETCH-LOGICAL-c4741-2cd3a2ccd85bc9041641e159972991bbcca5d85a7242579517111f436a16a74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2008.02661.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2008.02661.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20759711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Brow, Richard K.</creatorcontrib><creatorcontrib>Reis, Signo T.</creatorcontrib><creatorcontrib>Ray, Chandra S.</creatorcontrib><title>Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis</title><title>Journal of the American Ceramic Society</title><description>The crystallization kinetics of a solid oxide fuel cell sealing glass were studied using a new isothermal differential thermal analysis (DTA) method. The weight fraction of glass crystallized after an isothermal heat treatment was determined from the DTA crystallization peak area and the crystallization kinetic parameters were determined using the classical Johnson–Mehl–Avrami equation. The glass, an alkaline earth–zinc–silicate composition, crystallized in the temperature range between 740° and 950°C. The activation energy for crystallization varied with glass particle size and decreased from 570±25 to 457±30 kJ/mol as the average particle size decreased from 425–500 to ∼10 μm. The activation energy for crystallization, E, increased from 520±20 to ∼600±20 kJ/mol when glass particles (45–53 μm) were mechanically mixed with 10 vol% of micrometer‐sized Ni or YSZ powders. This increase in E reflects the effect of a second phase in composite seal systems, but is independent of the chemical nature of the additives. The measured values of the Avrami exponent (n) indicate that surface crystallization is the dominant crystallization mechanism for this glass, particularly for small particle sizes, e.g. n=0.9±0.1 for ∼10 μm.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Chemical industry and chemicals</subject><subject>Crystallization</subject><subject>Differential thermal analysis</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Glass</subject><subject>Glass-ceramics</subject><subject>Glasses</subject><subject>Mathematical analysis</subject><subject>Particle size</subject><subject>Reaction kinetics</subject><subject>Sealing</subject><subject>Solid oxide fuel cells</subject><subject>Structure, analysis, properties</subject><subject>Temperature</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv0zAUxyMEEmXjO1hIIC4JthPb8QlV3Vo2FSaxARIX69VxwMVNhp2Khk_P61r1wAHhi2359356z_8sI4wWDNebdcGEYDnXTBac0rqgXEpW7B5lk9PD42xCKeW5qjl9mj1LaY1XputqkjVXqR--u7iBQGZxTAOE4H_D4PuO9C0BctsH35CbnW8cmW8dUi4Ecusg-O4bWQRIiaxGcuHb1kXXDR5Fd0fhtIMwJp_OsycthOSeH_ez7NP88m72Ll_eLK5m02VuK1Vhq7YpgVvb1GJlNa2YrJhjQmvFtWarlbUg8A0Ur7hQWjCFH9BWpQQmQVW2PMteHbz3sf-5dWkwG58s9gud67fJlJIJLJYIvv4nyGjNOWVKaERf_IWu-23EwZLhTGkua1UiVB8gG_uUomvNffQbiCOazD4mszb7NMw-DbOPyTzEZHZY-vLoh2QhtBE669OpnlNsAudE7u2B--WDG__bb66ns8uHMxryg8Gnwe1OBog_jFSlEubLh4VZfv74_mL-VRhe_gH5V7Ml</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Zhang, Teng</creator><creator>Brow, Richard K.</creator><creator>Reis, Signo T.</creator><creator>Ray, Chandra S.</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200810</creationdate><title>Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis</title><author>Zhang, Teng ; Brow, Richard K. ; Reis, Signo T. ; Ray, Chandra S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4741-2cd3a2ccd85bc9041641e159972991bbcca5d85a7242579517111f436a16a74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Chemical industry and chemicals</topic><topic>Crystallization</topic><topic>Differential thermal analysis</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Glass</topic><topic>Glass-ceramics</topic><topic>Glasses</topic><topic>Mathematical analysis</topic><topic>Particle size</topic><topic>Reaction kinetics</topic><topic>Sealing</topic><topic>Solid oxide fuel cells</topic><topic>Structure, analysis, properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Brow, Richard K.</creatorcontrib><creatorcontrib>Reis, Signo T.</creatorcontrib><creatorcontrib>Ray, Chandra S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Teng</au><au>Brow, Richard K.</au><au>Reis, Signo T.</au><au>Ray, Chandra S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2008-10</date><risdate>2008</risdate><volume>91</volume><issue>10</issue><spage>3235</spage><epage>3239</epage><pages>3235-3239</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>The crystallization kinetics of a solid oxide fuel cell sealing glass were studied using a new isothermal differential thermal analysis (DTA) method. The weight fraction of glass crystallized after an isothermal heat treatment was determined from the DTA crystallization peak area and the crystallization kinetic parameters were determined using the classical Johnson–Mehl–Avrami equation. The glass, an alkaline earth–zinc–silicate composition, crystallized in the temperature range between 740° and 950°C. The activation energy for crystallization varied with glass particle size and decreased from 570±25 to 457±30 kJ/mol as the average particle size decreased from 425–500 to ∼10 μm. The activation energy for crystallization, E, increased from 520±20 to ∼600±20 kJ/mol when glass particles (45–53 μm) were mechanically mixed with 10 vol% of micrometer‐sized Ni or YSZ powders. This increase in E reflects the effect of a second phase in composite seal systems, but is independent of the chemical nature of the additives. The measured values of the Avrami exponent (n) indicate that surface crystallization is the dominant crystallization mechanism for this glass, particularly for small particle sizes, e.g. n=0.9±0.1 for ∼10 μm.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2008.02661.x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2008-10, Vol.91 (10), p.3235-3239 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_36157246 |
source | Access via Wiley Online Library |
subjects | Activation energy Applied sciences Building materials. Ceramics. Glasses Chemical industry and chemicals Crystallization Differential thermal analysis Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Glass Glass-ceramics Glasses Mathematical analysis Particle size Reaction kinetics Sealing Solid oxide fuel cells Structure, analysis, properties Temperature |
title | Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isothermal%20Crystallization%20of%20a%20Solid%20Oxide%20Fuel%20Cell%20Sealing%20Glass%20by%20Differential%20Thermal%20Analysis&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhang,%20Teng&rft.date=2008-10&rft.volume=91&rft.issue=10&rft.spage=3235&rft.epage=3239&rft.pages=3235-3239&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2008.02661.x&rft_dat=%3Cproquest_cross%3E36157246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217926873&rft_id=info:pmid/&rfr_iscdi=true |