Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk
Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constan...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2009-04, Vol.33 (4), p.1933-1943 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1943 |
---|---|
container_issue | 4 |
container_start_page | 1933 |
container_title | Applied mathematical modelling |
container_volume | 33 |
creator | Ashraf, Muhammad Kamal, M. Anwar Syed, K.S. |
description | Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of
R and the micropolar parameters. The present results are in excellent comparison with the available literature results. |
doi_str_mv | 10.1016/j.apm.2008.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36088287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08001078</els_id><sourcerecordid>20338304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a4f6d6f9a611a0319470fbf1dd3baa5d579e446d81fb725b657639ee317158763</originalsourceid><addsrcrecordid>eNqFkE1PxCAQhjlo4rr6A7z1orfWoZSWxpPZ-JUYvWjiSULLkLC2pUKr8d_LZjfGk4bDMO-8MzAPIScUMgq0PF9nauyzHEBkwDOAfI8sgEGV1lC8HJDDENYAwGO2IK8Pc4_etqpLgu3nTk3WDYkzienc5yaqpLetd6PrlI_ibHXS4PSJOMTS6LybQ6JteEvUoKMyuCH9pR6RfaO6gMe7uCTP11dPq9v0_vHmbnV5n7ZM1FOqClPq0tSqpFQBo3VRgWkM1Zo1SnHNqxqLotSCmqbKeVPyqmQ1IqMV5SLel-RsO3f07n3GMMnehha7Tg0Y_yJZCULkovrXmANjgkERjXRrjMuH4NHI0dte-S9JQW4wy7WMmOUGswQuI-bYc7obrkIkarwaWht-GnOaF4zHsyQXWx9GJB8WvQytxaFFbT22k9TO_vHKN1NJlFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20338304</pqid></control><display><type>article</type><title>Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ashraf, Muhammad ; Kamal, M. Anwar ; Syed, K.S.</creator><creatorcontrib>Ashraf, Muhammad ; Kamal, M. Anwar ; Syed, K.S.</creatorcontrib><description>Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of
R and the micropolar parameters. The present results are in excellent comparison with the available literature results.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.05.002</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Exact sciences and technology ; Extrapolation ; Finite differences ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Micropolar fluid ; Microrotation ; Non-newtonian fluid flows ; Physics ; Porous disk ; Similarity transformations ; SOR method</subject><ispartof>Applied mathematical modelling, 2009-04, Vol.33 (4), p.1933-1943</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a4f6d6f9a611a0319470fbf1dd3baa5d579e446d81fb725b657639ee317158763</citedby><cites>FETCH-LOGICAL-c389t-a4f6d6f9a611a0319470fbf1dd3baa5d579e446d81fb725b657639ee317158763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X08001078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21243535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Kamal, M. Anwar</creatorcontrib><creatorcontrib>Syed, K.S.</creatorcontrib><title>Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk</title><title>Applied mathematical modelling</title><description>Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of
R and the micropolar parameters. The present results are in excellent comparison with the available literature results.</description><subject>Exact sciences and technology</subject><subject>Extrapolation</subject><subject>Finite differences</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Micropolar fluid</subject><subject>Microrotation</subject><subject>Non-newtonian fluid flows</subject><subject>Physics</subject><subject>Porous disk</subject><subject>Similarity transformations</subject><subject>SOR method</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQhjlo4rr6A7z1orfWoZSWxpPZ-JUYvWjiSULLkLC2pUKr8d_LZjfGk4bDMO-8MzAPIScUMgq0PF9nauyzHEBkwDOAfI8sgEGV1lC8HJDDENYAwGO2IK8Pc4_etqpLgu3nTk3WDYkzienc5yaqpLetd6PrlI_ibHXS4PSJOMTS6LybQ6JteEvUoKMyuCH9pR6RfaO6gMe7uCTP11dPq9v0_vHmbnV5n7ZM1FOqClPq0tSqpFQBo3VRgWkM1Zo1SnHNqxqLotSCmqbKeVPyqmQ1IqMV5SLel-RsO3f07n3GMMnehha7Tg0Y_yJZCULkovrXmANjgkERjXRrjMuH4NHI0dte-S9JQW4wy7WMmOUGswQuI-bYc7obrkIkarwaWht-GnOaF4zHsyQXWx9GJB8WvQytxaFFbT22k9TO_vHKN1NJlFE</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Ashraf, Muhammad</creator><creator>Kamal, M. Anwar</creator><creator>Syed, K.S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk</title><author>Ashraf, Muhammad ; Kamal, M. Anwar ; Syed, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a4f6d6f9a611a0319470fbf1dd3baa5d579e446d81fb725b657639ee317158763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Extrapolation</topic><topic>Finite differences</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Micropolar fluid</topic><topic>Microrotation</topic><topic>Non-newtonian fluid flows</topic><topic>Physics</topic><topic>Porous disk</topic><topic>Similarity transformations</topic><topic>SOR method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashraf, Muhammad</creatorcontrib><creatorcontrib>Kamal, M. Anwar</creatorcontrib><creatorcontrib>Syed, K.S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashraf, Muhammad</au><au>Kamal, M. Anwar</au><au>Syed, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>33</volume><issue>4</issue><spage>1933</spage><epage>1943</epage><pages>1933-1943</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of
R and the micropolar parameters. The present results are in excellent comparison with the available literature results.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.05.002</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2009-04, Vol.33 (4), p.1933-1943 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_36088287 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Exact sciences and technology Extrapolation Finite differences Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Micropolar fluid Microrotation Non-newtonian fluid flows Physics Porous disk Similarity transformations SOR method |
title | Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20flow%20of%20a%20micropolar%20fluid%20between%20a%20porous%20disk%20and%20a%20non-porous%20disk&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Ashraf,%20Muhammad&rft.date=2009-04-01&rft.volume=33&rft.issue=4&rft.spage=1933&rft.epage=1943&rft.pages=1933-1943&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.05.002&rft_dat=%3Cproquest_cross%3E20338304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20338304&rft_id=info:pmid/&rft_els_id=S0307904X08001078&rfr_iscdi=true |