An improved application technique of the adaptive probabilistic neural network for predicting concrete strength

Recently, the probabilistic neural network (PNN) has been applied to the prediction of concrete compressive strength. PNN has the advantage over the conventional neural networks (NN) by utilizing lesser time in determining the network architecture and in training. Moreover, PNN yields probabilistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2009, Vol.44 (3), p.988-998
Hauptverfasser: Lee, Jong Jae, Kim, Dookie, Chang, Seong Kyu, Nocete, Charito Fe M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 998
container_issue 3
container_start_page 988
container_title Computational materials science
container_volume 44
creator Lee, Jong Jae
Kim, Dookie
Chang, Seong Kyu
Nocete, Charito Fe M.
description Recently, the probabilistic neural network (PNN) has been applied to the prediction of concrete compressive strength. PNN has the advantage over the conventional neural networks (NN) by utilizing lesser time in determining the network architecture and in training. Moreover, PNN yields probabilistic viewpoints and deterministic classification results. However, an important factor in the estimation results, the smoothing parameter, is a user-defined constant and deciding its value is a crucial part of the procedure. Its value affects prediction results significantly. Therefore, an improved application technique of PNN that does not utilize user-defined values for the smoothing parameter is presented. The proposed method called adaptive probabilistic neural network (APNN) uses the dynamic decay adjustment (DDA) algorithm to automatically calculate the smoothing parameter. Also, the estimation performance of PNN is improved by considering the correlation between the input data and the target output values. To evaluate the efficiency of the proposed method, the predicted strengths are compared with actual concrete compression test results as well as with the results obtained by the conventional PNN. The proposed technique proves to effectively estimate realistic values of concrete compressive strengths better than the conventional PNN.
doi_str_mv 10.1016/j.commatsci.2008.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36083398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025608003443</els_id><sourcerecordid>36083398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ee31b8942ba01227d6515f3d4369113fa5cfe8f546c819aae479f19b0d56c2953</originalsourceid><addsrcrecordid>eNqFkL1u3DAQhInAAXK28wxhk3RS-HOSyPJgOE4AA27smqBWSx8vEqmQvDPy9qFxhttU23wzOzOEfOGs5Yz33w8txGWxJYNvBWOqZUPLuPhANlwNumGK8QuyYVoMDRNd_4lc5nxgVamV2JC4C9Qva4onnKhd19mDLT4GWhD2wf85Io2Olj1SO9m1-BPSCo929LPPxQMNeEx2rqe8xPSbupgqgJOH4sMzhRggYUGaS8LwXPbX5KOzc8bPb_eKPP24fbz52dw_3P262d03IIe-NIiSj0pvxWhrFzFMfcc7J6et7DXn0tkOHCrXbXtQXFuL20E7rkc2dT0I3ckr8u3sW9PWErmYxWfAebYB4zEb2TMlpVYVHM4gpJhzQmfW5Beb_hrOzOvA5mDeBzavAxs2mBqqKr--vbAZ7OySDeDzu1xwXqMpXrndmcPa9-QxmeqEAepICaGYKfr__voHXnGYRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36083398</pqid></control><display><type>article</type><title>An improved application technique of the adaptive probabilistic neural network for predicting concrete strength</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Jong Jae ; Kim, Dookie ; Chang, Seong Kyu ; Nocete, Charito Fe M.</creator><creatorcontrib>Lee, Jong Jae ; Kim, Dookie ; Chang, Seong Kyu ; Nocete, Charito Fe M.</creatorcontrib><description>Recently, the probabilistic neural network (PNN) has been applied to the prediction of concrete compressive strength. PNN has the advantage over the conventional neural networks (NN) by utilizing lesser time in determining the network architecture and in training. Moreover, PNN yields probabilistic viewpoints and deterministic classification results. However, an important factor in the estimation results, the smoothing parameter, is a user-defined constant and deciding its value is a crucial part of the procedure. Its value affects prediction results significantly. Therefore, an improved application technique of PNN that does not utilize user-defined values for the smoothing parameter is presented. The proposed method called adaptive probabilistic neural network (APNN) uses the dynamic decay adjustment (DDA) algorithm to automatically calculate the smoothing parameter. Also, the estimation performance of PNN is improved by considering the correlation between the input data and the target output values. To evaluate the efficiency of the proposed method, the predicted strengths are compared with actual concrete compression test results as well as with the results obtained by the conventional PNN. The proposed technique proves to effectively estimate realistic values of concrete compressive strengths better than the conventional PNN.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2008.07.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive probabilistic neural network ; Applied sciences ; Buildings. Public works ; Concrete compressive strength ; Concretes. Mortars. Grouts ; Dynamic decay adjustment algorithm ; Exact sciences and technology ; General (composition, classification, performance, standards, patents, etc.) ; Materials ; Probabilistic neural network ; Strength of materials (elasticity, plasticity, buckling, etc.) ; Strength prediction ; Structural analysis. Stresses</subject><ispartof>Computational materials science, 2009, Vol.44 (3), p.988-998</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-ee31b8942ba01227d6515f3d4369113fa5cfe8f546c819aae479f19b0d56c2953</citedby><cites>FETCH-LOGICAL-c376t-ee31b8942ba01227d6515f3d4369113fa5cfe8f546c819aae479f19b0d56c2953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2008.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21181981$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jong Jae</creatorcontrib><creatorcontrib>Kim, Dookie</creatorcontrib><creatorcontrib>Chang, Seong Kyu</creatorcontrib><creatorcontrib>Nocete, Charito Fe M.</creatorcontrib><title>An improved application technique of the adaptive probabilistic neural network for predicting concrete strength</title><title>Computational materials science</title><description>Recently, the probabilistic neural network (PNN) has been applied to the prediction of concrete compressive strength. PNN has the advantage over the conventional neural networks (NN) by utilizing lesser time in determining the network architecture and in training. Moreover, PNN yields probabilistic viewpoints and deterministic classification results. However, an important factor in the estimation results, the smoothing parameter, is a user-defined constant and deciding its value is a crucial part of the procedure. Its value affects prediction results significantly. Therefore, an improved application technique of PNN that does not utilize user-defined values for the smoothing parameter is presented. The proposed method called adaptive probabilistic neural network (APNN) uses the dynamic decay adjustment (DDA) algorithm to automatically calculate the smoothing parameter. Also, the estimation performance of PNN is improved by considering the correlation between the input data and the target output values. To evaluate the efficiency of the proposed method, the predicted strengths are compared with actual concrete compression test results as well as with the results obtained by the conventional PNN. The proposed technique proves to effectively estimate realistic values of concrete compressive strengths better than the conventional PNN.</description><subject>Adaptive probabilistic neural network</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Concrete compressive strength</subject><subject>Concretes. Mortars. Grouts</subject><subject>Dynamic decay adjustment algorithm</subject><subject>Exact sciences and technology</subject><subject>General (composition, classification, performance, standards, patents, etc.)</subject><subject>Materials</subject><subject>Probabilistic neural network</subject><subject>Strength of materials (elasticity, plasticity, buckling, etc.)</subject><subject>Strength prediction</subject><subject>Structural analysis. Stresses</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkL1u3DAQhInAAXK28wxhk3RS-HOSyPJgOE4AA27smqBWSx8vEqmQvDPy9qFxhttU23wzOzOEfOGs5Yz33w8txGWxJYNvBWOqZUPLuPhANlwNumGK8QuyYVoMDRNd_4lc5nxgVamV2JC4C9Qva4onnKhd19mDLT4GWhD2wf85Io2Olj1SO9m1-BPSCo929LPPxQMNeEx2rqe8xPSbupgqgJOH4sMzhRggYUGaS8LwXPbX5KOzc8bPb_eKPP24fbz52dw_3P262d03IIe-NIiSj0pvxWhrFzFMfcc7J6et7DXn0tkOHCrXbXtQXFuL20E7rkc2dT0I3ckr8u3sW9PWErmYxWfAebYB4zEb2TMlpVYVHM4gpJhzQmfW5Beb_hrOzOvA5mDeBzavAxs2mBqqKr--vbAZ7OySDeDzu1xwXqMpXrndmcPa9-QxmeqEAepICaGYKfr__voHXnGYRA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lee, Jong Jae</creator><creator>Kim, Dookie</creator><creator>Chang, Seong Kyu</creator><creator>Nocete, Charito Fe M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>An improved application technique of the adaptive probabilistic neural network for predicting concrete strength</title><author>Lee, Jong Jae ; Kim, Dookie ; Chang, Seong Kyu ; Nocete, Charito Fe M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ee31b8942ba01227d6515f3d4369113fa5cfe8f546c819aae479f19b0d56c2953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive probabilistic neural network</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Concrete compressive strength</topic><topic>Concretes. Mortars. Grouts</topic><topic>Dynamic decay adjustment algorithm</topic><topic>Exact sciences and technology</topic><topic>General (composition, classification, performance, standards, patents, etc.)</topic><topic>Materials</topic><topic>Probabilistic neural network</topic><topic>Strength of materials (elasticity, plasticity, buckling, etc.)</topic><topic>Strength prediction</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jong Jae</creatorcontrib><creatorcontrib>Kim, Dookie</creatorcontrib><creatorcontrib>Chang, Seong Kyu</creatorcontrib><creatorcontrib>Nocete, Charito Fe M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jong Jae</au><au>Kim, Dookie</au><au>Chang, Seong Kyu</au><au>Nocete, Charito Fe M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved application technique of the adaptive probabilistic neural network for predicting concrete strength</atitle><jtitle>Computational materials science</jtitle><date>2009</date><risdate>2009</risdate><volume>44</volume><issue>3</issue><spage>988</spage><epage>998</epage><pages>988-998</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>Recently, the probabilistic neural network (PNN) has been applied to the prediction of concrete compressive strength. PNN has the advantage over the conventional neural networks (NN) by utilizing lesser time in determining the network architecture and in training. Moreover, PNN yields probabilistic viewpoints and deterministic classification results. However, an important factor in the estimation results, the smoothing parameter, is a user-defined constant and deciding its value is a crucial part of the procedure. Its value affects prediction results significantly. Therefore, an improved application technique of PNN that does not utilize user-defined values for the smoothing parameter is presented. The proposed method called adaptive probabilistic neural network (APNN) uses the dynamic decay adjustment (DDA) algorithm to automatically calculate the smoothing parameter. Also, the estimation performance of PNN is improved by considering the correlation between the input data and the target output values. To evaluate the efficiency of the proposed method, the predicted strengths are compared with actual concrete compression test results as well as with the results obtained by the conventional PNN. The proposed technique proves to effectively estimate realistic values of concrete compressive strengths better than the conventional PNN.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2008.07.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2009, Vol.44 (3), p.988-998
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_36083398
source Access via ScienceDirect (Elsevier)
subjects Adaptive probabilistic neural network
Applied sciences
Buildings. Public works
Concrete compressive strength
Concretes. Mortars. Grouts
Dynamic decay adjustment algorithm
Exact sciences and technology
General (composition, classification, performance, standards, patents, etc.)
Materials
Probabilistic neural network
Strength of materials (elasticity, plasticity, buckling, etc.)
Strength prediction
Structural analysis. Stresses
title An improved application technique of the adaptive probabilistic neural network for predicting concrete strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20application%20technique%20of%20the%20adaptive%20probabilistic%20neural%20network%20for%20predicting%20concrete%20strength&rft.jtitle=Computational%20materials%20science&rft.au=Lee,%20Jong%20Jae&rft.date=2009&rft.volume=44&rft.issue=3&rft.spage=988&rft.epage=998&rft.pages=988-998&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2008.07.012&rft_dat=%3Cproquest_cross%3E36083398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36083398&rft_id=info:pmid/&rft_els_id=S0927025608003443&rfr_iscdi=true